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Introduction

Carole B. Lacampagne

Sponsored by the U.S. Department of Education’'s Office of Educationat Research
and Improvement, the Algebra Initiative Colloquium was held December 9-12, 1993, in
Leesburg, Virginia (see the Agenda, appendix A). The Colloquium addressed specific
issues in the algebra curriculum and its teaching and learning. Algebra was chosen from
among the many subject areas of mathematics because algebra is the language of
mathematics; it is central to the continued learning of mathematics at all levels. Moreover,
although several groups are already at work on the reform of algebra, there has been little
dialog bridging educational levels. The Algebra Initiative Colloquium fostered such dialog
{see the Conceptual Framework for the Algebra Initiative of the National Institute on
Student Achievement, Curriculum, and Assessment, appendix B).

Fifty-one distinguished algebra teachers, mathematics education researchers,
algebraists, and mathematics experts from federal agencies attended the Colloquium [see
List of Participants, appendix C). In addition to hearing and discussing the plenary and
reactor addresses, participants were assigned to one of four working groups to debate the
issues and, where possible, to come up with recommendations. The working groups and
their foci are listed below:

Working Group 1: Creating an appropriate algebra experience for alf grades K-12

students;

Working Group 2: Educating teachers, including K-8 teachers, to provide these

algebra experiences;

Working Group 3: Reshaping algebra to serve e evolving needs of the technical

workforce; and

Working Group 4: Renew!ng algebra at the college level to serve the future

mathematician, scientist, and engineer.

Prior to the Colloquium, working group participants wrote short papers con their
group’s focus area and shared papers within the working group, thus getting a head start

on Colloquium deliberations. These papers, revised after the Colloquium, together with

[
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recommendations from each working group and a summary of Colloquium discussions
appear in this volume. Plenary and reactor papers appear in the companion publication,
The Algebra Initiative Colloguium, Vohlsme [

A short document for teachers and policymakers was prepared on the basis of
recommendations from the Colioquium. This document, Algebra for All: A Lever, nct a
Wedge, will scon be available through the National institute on Student Achievement,

Curricuium, and Assessment.
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- Summary

Carole B. Lacampagne

Sponsored by the U.5. Department of Education, The Algebia initiative Colloquium
generated a number of questions, concerns, and recommendations to promo e the reform
in algebra across the educational gamut, K through 186.

According to Lynn Steen, "The major theme of this conference is very simple:
Algebra is broken but nonatheless essential.” From this premise, several
subthemes/questions/concerns emerged that might be considered in setting an algebra

agenda. These include:

® Algebra, the new civil right;
L4 The chasm that separates K-12 and 13-16 algebra education;
L] A new algebra curriculum and pedagogy for preservice teachers and support

and practice for current teachers;
° Algebra for the technical wor' force;
The story line of algebra; and

. The brick wall.
Algebra, The New Civil Right

As Robert Moses so eloquently put it, "Algebra is the new civil right." Working
Group 1 (Creating an appropriate algebra experience for all grades K-12 students) calls

algebra "... the academic passport for passage into virtually every avenue of the job market
ard every street of schooling.” Moreover, since students from non-Asian minarity groups
are less likely to have obtained this passport than others, algebra becomes an equity issue.

Working Group 1 recornmended that all students have sigi.ficant experiences in
algebra before the end of grade 8 and that these experiences be the enuivalient of current
ninth-grade algebra. They aiso recommended that these experiences be strands that flow
through K-8 mathematics.

Algebra for all is a bold statement. As keynote speaker Victor Katz pointed out,
algebra has a history of being an elitist subject meant for the education of future priests or

leaders. Many of the story problems found in current high school algebra texts date back



Q

ERIC

Aruitoxt provided by ERic:

S
@@

to antiquity and are artificial, not real-life problems. If we are to implement algebra for all,
we must overcome this longstanding elitist tradition.

A question that plagued Coliogquium participants was, "How do we insure that
‘algebra for ali’ is not ‘dumbing down’ algebra?" The mathematical community as well as
parents of college-bound students will and should demand sound preparation in algebra for
the college bound. *Ve will be faced with building an algebra curriculum and pedagogy that
will support the needs of all students.

Integrating algebra into the K-8 mathematics curriculum was also a topic of
considerable interest to Colloguium par-icipants. Such integration would eiiminate algebra
from its current gate-keeper function, for algebra wouid be tearned over a period of 8
yvears. The college death knoli—failing algebra—would no longer exist. Moreaver, many
countries already integrate algebra into their K-8 curriculum through the use of a strands
approach; that is, each year a strand of algebra as well as strands of arithmetic and
geometry are taught. Several curriculum projects in the United States have developed or
are developing such an approach. These curriculum projects need to be tested in
classrooms to prove their effectiveness, and promising practices need to be disseminated.

Several participants were concerned that we do not know enough about how
children and adults develop algebraic concepts. More research is needed on how algzbraic
concepts are developed. Findings from this research should then be ¢ nsidered when
designing algebra curriculum,

Looking to tha future when algebra could be folded into the K-8 curriculum raised
severat guestions:

® What do we do with ninth-grade mathematics once algebra has been learned

by eighth grade? How dc we prepare for such change?

. How do we influence public policy —state legislators, boards of education?
State legislators and boards of education must adjust their ninth-grade
mathematics requirements to the new curriculum. How do we get parents to

buy into this new alignment?
The Chasm That Separates K-12 and 13-16 Algebra Education

1t became disturbingly apparent as the Algebra Initiative Colloguium progressed that
mathematicians involved with research in the learning and teaching of algebra at the K-12

level seldom talk with those involved in algebra at the 13-16 fevel.

4
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Working Group 4 (Renewing algebra at the college level to serve the future
mathematician, scientist, and engineer) suggested saveral areas in which further dialeg
was needed between K-12 and 13-16 people to:

] Lay the basis in high schcal for some important ideas from linear and

abstract algebra;

® Find new ways to engage students in linear and abstract algebra;

® Develop places across the entire algebra experience to expose students to

the use of proof; and

L Search for the "big themes" which run throughout the algebra experience,

Initiatives for getting this dialog going are already under way, thanks to the
groundwork laid at the Colloquium.

A New Algebra Curriculum and Pedagogy for Preservice Teachers and
Support and Practice for Current Teachers

Reform in the schoo! algebra experience necessitates a change in the algebra
experiences of pre- and in-service mathematics teachers. Questions wrestled witH by
Working Group 2 (Educating teachers, including K-8 teachers) to provide these algebra
experiences included:

L g How do we help elementary school teachers gain the knowledge,

pedagogical skills, and desire to integrate algebra into the K-8 curriculum?
How can we prepare parents and communities for this new approach?

* How can we encourage mathematics and mathematics education faculty at
the college level to model the pedagogy we wish to see prospective teachers
use in the schools?

L What experiences with mathematical medeling should pre- and in-service
teachers have in order t¢ teach algebra effectively?

Working Group 2 believed that all teachers of pre-college algebra {K-12) need an in-

depth understanding of numeracy and quantitative reasoning. They should alsc have a
working knowledge of how to use techneclogy in instruction and how to access real-world
examples that employ algebra. They should possess a belief in the valte of mathematics

and a commitment to the development of algebraic thinking for all students.

(%)
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Algebra for the Technical Work Force

Working Group 3 had several recemmendations for reforming the K through 14
mathematics curriculum and teaching, including that all students should study the same
mathematics through grade 11, with aigebra playing a significant part in the curriculum.
Moreover, they saw mathematical modeling as a central ¢r organizing theme for school
mathematics. These recommendations led to such further concerns as:

. What should be the common mathematics curriculum required of students

through grade 11?
L What alternative mathematics courses should be taught in grade 12?7
] How do we mount a serious study of what algebra/mathematics is used in

technicaf jobs?

L How do we remediate the remedial mathematics programs in our colleges?
. How do adult learners best learn algebra?
® Currently, we teach content, then application. If mathematical modeling were

our focus, we would teach applications then content on a need-to-know
basis. Can or should we embark on such a radical change?

L] How can we begin to work with the vocational/technical education
community to provide a meaningful algebra experience in all its programs?

The 3tery Line of Aigebra

At the Colloguium, participants had trouble identifying the "story line" of algebra.
Specifically, Bob Moses challenged us to describe what (high school, linear, or abstract)
algebra is and why a student should study it. If algebraists and teachers of algebra cannot
explain to each other what algebra is ai! about, how can we expect t0 engage prospective
students, their parenfs, and the community in the study of and support for algebra?
Participants felt that the mathematical community must be able to answer such questions
and to communicate thesz answers to the public at large.

The Brick Wall

Working Group 4 spent much time deliberating an how to confront the "brick wall”;
that is, how to help students through their first proof course {usually abstract algebra).
They discussed the pogsibility of starting a dialog, perhaps in a journal like The American

Mathematical Monthly, on hcw to help students over {(around) the brick wall and on

143
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sharing concrete examples and problems in abstract alget:ra among those who teach
abstract algebra.

The big problem that this group wtestled with was how to reconcile the need for
formal proof at the coliege level with the trend to downplay formal proof in the schools in
favor of communicating ideas and understanding.

Participants at the Algebra Initiative Colloquium made a good start in identifying
problems in the learning and teaching of algebra at all levels. They made several
recommendations to help solve these problems. But many questions they raised remain
unanswered. |t is hoped that federal agencies working with ieaders in the mathematical
community will provide leadership in renewing algebra to meet the needs of the 21st

century.
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Report of Working Group 1

Alan Schoenfeld
University of California, Berkeley

This report is written in the context of a series of confersnces and reports, spanning
better than a decade, urging the reconceptualization of what is taught as algebra in this
nation's schools. {See, e.g., the reports Algebra for Everyone [1990] and Algebra for the
Twenty-first Century 118821 from the National Council of Teachers of Mathematics
[NCTMI.) To pick just one group whose recommendations are similar to ours, we note that
the NCTM'’s Task Force on Algebra urged the development of a national consensus vison
statement with regard to algebra. The working definition of the Task Force is that
"Algebra is a study of patterns/relationships and functions which uses a variety of
representations including verbal, tabular, graphical, and symbolic. These representations
make it possible to: use technological tools effectively; communicate, analyze, and
interpret information; formulate and solve problems by collecting, organizing and modeling
data; describe important patterns of behavior of families of functions; [and] recognize,
interpret, and use discrete and continuous relationships.” The Task Force’s vision
statement included the following non-negotiable principle: "A national goal that every
student will graduate from high school with the algebraic skills and knowledge necessary
to function in our technological society;" also that "algebra will become a K-12 strand”
{rather than being isolated in a single year’s instruction, typically ninth grade). [Reference:
Betty Phillips” conference paper, page 10.] We begin ttis report with an affirmation of
those statements of principle.

All Students Must Study Algebra

There is a new literacy requirement for citizenship. Algebra today plays the role
that reading and writing did in the industrial age. If one does 1int have algebra, one¢ cannot
understand much of science, statistics, business, or today’s tecanology. Thus, algebra has
become an academic passport for passage into virtually every avenue of the job market
and every stree: of schooling. With too few exceptions, students who do not study

algebra are therefore relegated to menial jobs and are unable often even to undertake

1
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training programs for jobs in which they might be interested. They are sorted out of the
cpportunities to become productive citizens in our society.

The study of algebraic ideas must pervade the curriculum. It must not be localized
into cne or two intense, decontextualized courses in symbcl-manipulation techniques
during midd!e and secondary school. Rather, as elaborated in recommendations 1 and 2,
the study cf algebra must begin early in the curriculum, and increase consistently through
the years.

Recommendation 1. All students should have significant exgperiences in algebra (totaling at
least one year of work) befere the end of grade 8.

This recommendation represents a significant departure from current practice, and a
significant challenge. It follows, first, frcm the goal statement above. In the most recent
National Assessment {1992} about 81 percent of 17-year-olds reported having taken at
least a semester of algebra in schocl. Te provide the relevant skills for the rest of the
students [largely those who have been shunted into courses in remedial mathematics, or
those who drep out of school} requires that we reach them earlier in their scheol careers.
But this is not "cnly" an issue of equity; it is an issue of providing relevant skills for alil
students, when they are ready to learn them. While the traditional algebra course may
seem to represent, for reasons of familiarity, the way things "must be," the fact is that
such a course is an American anomaly: the rest of the world has not had a separate, 1-
vear, high school course in algebra. Indeed, in other countries, where (traditional) algebra
is taught earlier, more students seem to be successful. Because algebra is very much a
language, like other languages it is better learned earlier and harder tc Jearn when one is
older. In addition, when students start earlier, the {earning of algebra can occur over a
longer period of time, with all the advantages that great~r time exposure allows. The
technical aspects of current algebra courses that serve as barriers for students, such as
very complicated symbclic manipulations, can {(and should) be done with the help of
technology. We have ample evidence that the use of contextual situations makes it easier
to approach algebra. Furthermore, if one begins earlier, the unfortunate role of algebra as a
sorter will necessarily be diminished, because all students are in school and there is less

tradition of separating students.

12
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Exactly how these experiences should be designed is open Lo study. Mathematics
cutricula in other countries and current NSF-funded curriculum projects can provide a start,

but some more specific curricular efforts in algebra at the K-8 level would be appropriate.
What Algebraic Understandings Should Students Develop?

Recommendation 2: All students need to learn the following aspects of algebra:

L The representation of phenomena with symbols and the use of these

symbols sensibly;

] The use of variables to describe patterns and give formulas involving

geometric, physical, econormic, and other refationships;

L] Simple manipulations with these variables to enable other patterns to be

seen and variations to be described;

L The solving of simple equations and inequalities and systems by hand and of

more complicated equations and inegualities and systems by machine; and

L The picturing and examination of relationships among vanables using graphs,

spreadsheets or other technology.

If we describe mathematics as the study of numericai, geometric, logical, and
structural patterns, then the overarching reason for the study of algebra is that algebra is a
powerful language in which patterns from all of mathematics are describeq. itis a
powerful means of expression that reflects and helps to structure the use of logic and
abstraction, which are valuable mathamatical "habits of mind."

A major aspect of algebra is the representation of a situation in algebraic or other
symbolic form, and operating on the symbals in a way that makes sense—both with regard
to the symbols themselves, and with regard to the situations being represented. The
development of symbol sense, and of representational capacities, are among the main
goals of algebra instruction. Symbaol sense includes such ideas as: 2n is twice n; if you are
of age A, the age of your parent who is 25 years older than you is given by A+ 25; if this
section contains n words and the next section contains m words, then they contain m+n
altogether; when area = length X width and the width is multiplied by some guantity, so is
the area. At more advanced levels, it includes having an understanding of notions such as
commutativity, not only in symbolic terms but in meaningful applications—for example, in
noting that certain universal replacements made while using a text processer are not

commutative, while others are, and acting accordingly.

13
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The patterns of algebra (should} begin in the early elemeniary schoc! when students
(should) learn that one can add two numbers in either order and obtain the same sum; in
algebraic language, that a + b = b + a. This algebraic description of the general pattern
has three advantages owver verbal or visual descriptions. First, it looks like the specific
instances 2 + 3 = 3 + 2or, later, 12 + 38 = 38 + 12, Second, it is shorter, with no
unnecessary words or symbols. Third, the algebraic objects themselves —the variables a
and h—can be manipulated to relate old rules and to form new rules. For example, the
Distributive Property alb + c) = ab + ac can be extended .0 the multiplication of
binomials {a + b)(c + di = ac + ad + bc + bd, and both properties can be used to do
mental arithmetic.

Because calculators can and should do virtually all of the complicated arithmetic
that students have been asked to do in schools, knowing these patterns {e.g., knowing
when addition and multiplication can be done in any order, or knowing when two divisions
can be combined into one) is critical for intelligent use of these machines.

The patterns continue through elementary school when students (should] iearn
formulas for the perimeters, areas, and volumes of common figures, and when they learn
that the physical and economic world around them is described in the language of
mathematics. Area formulas require a knowledge of squares and square roots; volume
formulas require cubes and cube roots; compound interest and population growth require
the algebra of exponer.ts more generally; the descriptions of orbits of thrown or propelled
objects involve quadratics. All of these help the student understand that the world around
them has regularities with predictable consequences, and help the student learn to live in
that world.

It is often the case, when dealing with formulas, that some of the quantities are
known and others are not. The length and area of a building may be known. but not its
width. The temperature in °F might be known but not in °C. We may know some
positions of a batted ball, and want to know how high or how far or how long it traveled.
We may wish to know, under certain assumptions, when the world population will reach a
certain level. We may have several constraints on a situation, and wish to know whether
they can all be satisfied. These lead to the solving of equations, or of systems of
equations, or of inequalities. Today, paper-and-pencil techniques are used in schools to

solve these equations, hut computer software and sophisticated calculators already exist

14
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that enable such equations to be solved autcmatically. Ve expect that by the end of the
century the price of such tools will be such that it will be economically feasible for all
students to have access to them in schools, and that the tools will be user-friendly enough
to make them attractive for purchase by virtually all students. But whether or not these
tools are universally available, the use of algebra to obtain new information from given data
is an exceedingly important and powerful reason for its study.

As soon as one has a formula relating two or riore quantities, natural questions
occur. What will happen if one of the quantities is changed? For instance. if the area of a
planned building is to be a certain quantity, and we are wondering what its dimensions
should be, what happens as we consider larger and larger lengths? Or what happens to
the velocity of a batted ball over time? Qr what happens to the real value of money put in
a savings association when there is a certain amount of interest paid but also there is
inflation? We often wish to know what happens if we change a variable just a little.
Algebra is naturally associated with the study of functions and other relations between
variables. It provides a language by which change and variation are easily described.
Historically, this connection is so powerful that though it took thousands of years from the
time that algebraic problems were first considered until the development of algebra like
that we use today, it took less than another hundred years, from the 1690s until the
1680s, to go from algebra to the development of calculus simultaneously in two different
countries.

The development of spreadsheets and graphing technology has made it possible to
store and access numerical and gr:ometric information in a way unheard of a half century
ago. In small and large businesses, people examine relationships between costs and
profits by storing the information in spreadsheets, by changing one variable and seeing
what happens to others. Population, or sports statistics, or results of polls can be graphed
and examined. Woe used to think of functions as abstract entities, and it was appropriate
that they be introduced in the later years of high school mathematics. But today it has
become possible to see them, and to manipulate them bcth numerically and graphically,
and as a result they are concretized and far more accessible to younger students. They are
so concrete that some believe that it is through functions that one should learn algebra.
Note that the use of such media, and the development of algebraic understandings

grounded in them, represent a two-way street: operating on spreadsheets or with graphing
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programs can help students develop understandings of algebraic ideas, and understanding
the algebraic ideas provides a structure for understanding how to work with the media.

When one looks at these reasons, it is difficult to explain why any student should
not l¢arn at least this much algebra.

We believe the above ideas should be mastered by all students by the end of tenth

grade. In order to do so, much of this algebra should be given concentrated attention
before the end of eighth grade. It is also the case that there are concepts {e.g., estimation
and optimization) and processes {such as modeling and cooperation) that need
concentrated attention. For this to take place, the algebra will have to be packaged
differently than it has before. It will have to be done over a longer period of time, and with
many more connections to other branches of mathematics.  But there is other algebra to
which all students should be introduced before the end of tenth grade, and as many
students as possibie should have opportunities to study in more depth.
Recommendation 3: All students should be introduced to operatioris and their properties in
the various number systems (such as whole numbers, integers, real numbers, and complex
numbers), and on objects other than numbers (such as sets, matrices, transformations, and
propositions).

The storing of data in arrays such as those found in spreadsheets is not new.
Newspapers have for a long time given weather, stock, and sports information in rows and
columns. These arrays, when viewed mathematically, are calied matrices. The
mathematics ot these arrays —one aspect of linear algebra—is surprisingly fruitful. It is
related to the solving of systems of equations and to the changes in size and shape of
geometric figures, with applications as diverse as t0 the efficiency of delivery systems in
business and weather forecasts. It is not by accident that virtually every business major in
college needs to take some linear algebra. Linear algebra begins with the arrangement of
information in rows and columns and the solution of systems of two linear equations in
two unknowns such as has been traditional in early algebra study. One can then progress
up a ladder of abstractions, to the point where substantial mathematical power is seen.
The groundwork for such mathematics, including matrix operations and transformations
they represent, should be established in the high school algebra curriculum.

It is critical also that students realize that algebra studies patterns among patterns,

and that its variables may stand for objects other than numbers or points. The study of
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commonalities in the structures of arithmetic can begin in the early elementary grades,
when a student realizes that addition and multiplication are commutative but subtraction
and division are not. It should continue through the grades, as ideas of inverse operations
and inverse functions, and identities are studied both in arithmetic and with
transformations in geometry. The union and intersaction of sets in geometry, systems of
equations in algebra, and their relationships tc the logic of propositions provide still another
example of the many commonalities that exist among diverse mathematical objects. The
structures themselves—fields, groups, and so on—we helieve to be most appropriately
studied at the college level, but the language of properties {such as the properties of whole
numbers, integers, real numbers, and complex numbers} and the emphasis of common
features of diverse mathematical systems is appropriately a school level experience.
Recommendation 4: The mastery of a smaller number of paper-and-pencil manipulative
skills should be expected of all students. Symbol manipulation software and calculators
should be used for other manipulative skills, perhaps including skills not now accessible or
easily accessible with paper-and-penci! techniques.

It should be noted that we are not calling for an "easier” or "watered down" algebra
experience for students; rather, we are calling for a more appropriate experience, which
may well mean dealing with more complex, but more meaningful, topics than are currently
taugl:t. Currently, Lhere are topics taught even in early algebra that we feel are not
necessary for all students to know because.they do not fit any of the major reasons for
studying algebra. These include, for example, the paper-and-pencil long division of
polynomials, extensive operations with rational polynomial expressions, and mantpulations
with nth roots beyond n = 2. Also, students should' not be asked to spend extensive
amounts of time mastering paper-anc pencil manipulations that can more easily be done by
computer or calculator.

Recommendation 5; Both short-term and fong-term strategies are needed to ensure that all
students study a significant amount of algebra.

The recommendations made above require a careful, long-term pian for the
development of a revitalized and meaningful algebra program. Ultimately, we envision a
more intellectually coherent, more accessible, and more powerful algebra experience for all
students. However, the development of such a program will take time—and there are

students in the current program who cannot wait until the new program is fully in place.
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Those students need help now, on the basis uf whal we do know. Hence, we propose a
two-pronged strategy: (a) the development of a long-term approach for the restructuring of
K-12 mathematics, with a deeply embedded strand of algebraic ideas as discussed above;
and (b) the pursuit of short-term improvements in current courses called "algebra" for
those students who are currently in the pipeline. In the short run, current coursés can be
made more meaningful, and the experience of some algebraic ideas can be embedded
substantively into the middle school curriculum.

Recommendation 6: A much expanded research base is required to make continued
progress on recommendations 1-5 above.

Much of the progress of the past decade has been undergirded by increased
understandings of the processes of thinking and learning—understandings of the kinds of
active engagement required for mathematics learning, and of the inadequacy {for the vast
majority of students) of instruction in disembodied symbol manipulation. We have, for
example, made some progress on conceptualizing the kinds of connections students need
to make among various representations {verbal, tabular, graphical, symbolic) to be flexible
and competent users of algebra. We have an improved, although still sketchy,
understanding of the cognitive underpinnings of competence in algebra, and of the kinds of
instructional practices that support the development of such competence. Some progress
has been made on the uses of technology in algebra (though this is a moving target!).
However, we need to know much more about these issues; also about what constitutes
"symboi sense” and how it is developed; about the roles and balance of "rote skills" and
machine-performed computations; about the development of modeling skills and the
character of mathematical abstraction; about the successes and difficulties of various
approaches to teaching algebra lincluding attempts in other countries), and about the use
of mathematical and algebraic thinking, often unrecognized, in work settings. Likewise
{though we have dealt with this theme only implicitly, because it is the province of
Working Group 2), we need to know much more about the creation of effective
instructional environments, and the kinds of teacher understandings required to foster

algebraic thinking in such environments.
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Five Questions About Algebra Reform
(and a Thought Experiment)

Daniel Chazan
Michigan State University

1. Why Does High School Mathematics Fulfill a Gate Keeping Role in
Our Society? (assuming that mathematics fulfills such a role)

| find Philip Cusick’s idea of the "egalitarian ideal" important in this context—that
schools will provide each student with an opportunity for social, political, and economic
equality. Our society at least pays lip service to the desire to actualize the potential of a
wide range of our population, yet college is a limited resource and is not universally
accessible. Criteria for access to continued education can’t be obviously unfair. There
needs to be some sort of seemingly objective measure. The valuation of mathematics has a
long history in western thought. It is seen as a difficult subject of study and one which is
some sort of index of intellectual capability.

As mathematics educators, it is important 10 acknowledge that we benefit from this
gate keeping role. This role makes mathematics important politically and helps justify much
of the funding that is now available to us. Art educators, for examiple, are finding the
current budgetary constraints much more problematic. At the same tinie, there are
unfortunate side effects of the identification of mathematics with gate keeping and access
to college. In particular, it makes it difficult to think about the mathematics education of
students who don’t end up going to college. Serious attempts in such a direction are
hampered by concern that such a mathematics education will systematically exclude
identifiable groups (by race, class, gender, ethnicity} from a college education and thus
contravene the egalitarian ideal.

2. Why Has the Traditional Set of Algebra Courses Become So Central
in the High School Mathe matics Curriculum?

| believe that the centrality of algebra is a result of its {hierarchicall connection with
calculus and our adherence to the egalitarian ideal. Arguably, calculus is seen as an

important part of the background of a literate graduate of U.S elite institutions of higher

19

(%)

ERIC

PAruext provided by ERIC



(%)

ERIC

PAruext provided by ERIC

education. Collegcs that don't insist on calculus for the most part seem to do so
apologetically with some sort of argument about the lack of preparation of incoming
students, Skill at algebraic manipulations is seen as a prerequisite for calculus. In many
institutions, students who are not ready for calculus must do prior coursework without
receiving credit.

Though | do not have any scholarly insight, it is interesting to speculate about how
calculus came to have this role in college education. Clearly, there are some fields for
whic;h caleulus is an important technique (faculty in these fields thus have concerns about
changes in algebra and calculus curricula). However, | think that the importance given to
calculus is an historical artifact of the felt achievement that calculus represented at the
time it was initially being developed and colleges were being created. These ideas were
thought to be the most powerful ideas created to that point. At the same time, people
were deciding what to include in a college education.

The combination of the importance of calculus at the college level and the
egalitarian ideal suggests that it is important, at least in theory, to provide a wide range of
students with access to mathematical preparation which would allow them to enter
calculus successfully (though much of the mathematics taught at colleges is remedial from
this point of view!}. Algebra is seen as the necessary preparation for calecuius. Thus, high
school in particular should prepare as many students as possibie for calculus by taking
algebra. There must be "good" reasons for putting students in mathematics classes which
do not include such preparation.

When thinking of algebra specifically, much of what is taught in traditional algebra |
and algebra Il courses is a comfort with the manipulation of symbols. The main reason to
acquire this comfort is to enable the student to do further mathematics {(mainly calculus).
These manipulations are taught by modeling and by rote, and the appropriateness of
particular manipulations for particular instructions (simplify, factor, solve} is accomplished
by pointing and repetition {ostention}. The unfortunate effect of this situartion is that as
mathematics teachers, we are always focusing on what mathematics comes next and not
how the mathematics we are teaching can be of value for people in their lives. Again,
students who do not go to college end up being poorly served,

One intriguing idea proposed by Jim Kaput at the conference is to change our medel

of curriculum drastically from a layer cake approach to a strands approach. Thus, he
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proposes removing calculus as the capstone of high school mathematics by integrating
calculus into the K-10 mathematics curriculum as the study of the mathematics of change.
Study of change could then be used as a context for developing algebraic understandgings.

Algebra would then be a part of all students’ elementary and middle school experience.

3. What Might Be Important Criteria for Proposals for Changing the
Algebra Curriculum? (if there actually is such a possibility)

As someone who teaches an Algebra | class with students who in large percentages
will both go on to some postsecondary education and who will work upon graduation from
{or leaving) high school, | would like to be able to serve both types of students. | would
like to prepare students who might like to go to college in such a wa* .:at they can go to
college. 1 would also like to teach students who are not headed to college in such a way
that they will feel that their interests, concerns, and life trajectory are being acknowledged
and planned for.

At the same time, | don't want to be making the decision for my students about
which category they fall into. I'd also not like to have school counselors making those
decisions. Finally, | am also conce_rned about having some of my studeénts making those
decisions without adult guidance and without access to a broad range of information.
Interestingly, at our conference, university mathematicians also expressed a concern about
the preparation of students for linear and abstract algebra at the college level.

4. s it Possible to Meet Students’ Needs by Teaching a Single

Curriculum to a Heterogeneous Group of Students in a Single Class? If

So, What Might Be a Conceivable Basis for Such a Curriculum? (it's a
setup! I'm sure there must be other approaches as well.)

I'm not sure if it is possible to do so, but | think that the benefits of having such a
curriculurn tustify an exploration of any possibilities that people can suggest. Such a
curriculum would allow teachers to fulfill their responsibilities to the egalitarian ideal and
also teach meaningful mathematics to students who are not headed to college.

For the past 3 years, | have been teaching Algebra | as a course focused on learning
how to express and study mathematically, relationships between two varying quantities —
an independent variable and a dependent one [similar in many respects to the kinds of
problems presented by Alba Thompson). We spend a lot of time iearning io read and write

tables, graphs, and expressions (symbols) which represeni actual quantities in situations

21

21



[y
=y

Q
ERIC

Aruitoxt provided by ERic

/@@@

{ones that | design, one that students design, an ones which we find in exploring
mathematics in the world of work}. We also study tables, graphs, and expressions in the
context of pure mathematics.

| see such an emphasis as valuable in helping students who are going on to calculus
develop intuitions and skills which will be useful as they continue to study functions. After
talking with Guershon Harel, | think developing an algebraic habit of mind {(a phrase which
Al Cuoco kept raising) which insists on understanding what it is that the symbols are
standing for is a helpful prerequisite for other more advanced mathematics courses like
linear algebra and abstract algebra. | also think that such of course is of value to students
who do not go to college. Tables and graphs are cultural artifacts that are widely found in
our society (more widely than literal symbols, though literal symbols are becoming more
important in interactions with computers). These artifacts are not necessari'ly self-evident.

There is a lot to fearn about reading these representations.

5. What are Some Obstacles to the Creation of Such a Curriculum? (i'm

assuming that there are many more than the one indicated below, for example, what are
the ramifications for college math curricula.)

The traditional Algebra | course focuses on developing skills at the manipulation of
symbols. Most of the manipulations are done in a "pure" math context, without reference
to situations. Students are rarely pressed (o find contexts which would lead to strings of
algebraic symbals. Word problems, as the representative of situations in the traditional
course, are seen as a place to apply equation solving. Tabular or graphical solutions are not
developed or stressed.

As a teacher, | have found it challenging to take the agenda of quantities in
situations seriously. There is a huge intellectual challenge here—to construct an
understanding of how mathematics helps us appreciate aspects of the relationships
between quantities which otherwise are not accessible. I've been looking for where tables,
graphs, and symbols show up and how they help me understand calculations {algorithms)
which people compute repetitively and the relationships between guantities which such
algorithms signify.

To close this paper and give an example of the assertions in the previous paragraph,
I'd like to share attempts to think about the purposes and values for learning to simplify

linear expressions. |'m not sure whether the understandings expressed below suggest that
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learning about such simplifications is important for people not going further in mathematics
(maybe there are other more important things), but it is an attempt to provide such a
rationale. (Again, it's a set up. I've tried to choose the hardest thing i sould find.)

Forms of Linear Expressions

Linear functions of one variable are functioris for which there is a constant rate of
change, in other words, there is a constant change in the value of the dependent variable
for equal sized increments in the independent variable. Traditionally, a series of
"properties" are valued in describing such functions and differentiating them one from
another: whether the function is decreasing or increasing; the rate of change, or slope; the
value which cerresponds to O, or the y intercept; and the value of the independent variable
which results in an output of C, or the x intercept. All of these properties can be read off
suitably prepared graphs, tables, or expressions. I’ll focus below on the relationships
between forms of linear expressions and these four properties.

Linear functions come in many shapes and sizes, for example:

-350(t-- 3) + 700;
3x-27;3(x-9);
4-(3-(2-{1 +x))); and
Ix+44-7x+3x+2
Traditionally, one form is considered to be the privileged, simplified form. This form mx+b,
sometimes called the slope intercept form, cannot be made simpler. The knowledgeable
reader of expressions can, without substituting values, read off the values of the slope and
the y intercept of an expression in this form. For the purpose of simplifications, particulariy
of rational expressions, students are also asked to factor expressicns in the mx +b form
and put them in what is commonly known as the factored form mix-r).

| will not attempt an exhaustive analysis of all possible forms, or investigate how
different forms arise in a variety of practices. Rather | will concentrate on three particular
forms, all of which can be considered simple in that they cannot be simplified further
without the use of the distributive rule, that is there are no like terms which can be
combined. In the chart that follows, these forms are named to highlight the information

each presents to the knowledgeable reader.
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mX + b mix-r) mix-X,} + v,
slopely intercept slope/x intercept point/slope
increasing/ can be read off can be read off can be read off
decreasing
slope can be read off can be read off can be read off
y intercept can be read off must be computed | must be computed
X intercept must be computed can be read off must be computed

In some ways, the point/slope form can be considered the most general one, where the
other two are specific cases. The point slope presents information about some point (x,,
v.} whereas the other two forms present information about "special” points. Thus, these
three forms differ in the particular points which they idéntify most éasiiy for the
knowledgeahle reader.

To me, this difference becomes interesting when working on word problems or in
understanding how algebraic expressions represent a situation. The alternative forms can
be considered as different mathematical descriptions of the situation. For example:

You take out a car loan (at O percent financing) and then repay it by paying

the same amount each month. Here are three mathematical descriptions of

the balance that you owe and how it changes over time.
215t -4300
215(t - 10) -2150
Balance of account {time} = 215{t - 20}

Balance of account (time)

Balance of account (time}

i

In particular, in cases like this one, where time is the independent variable, the descriptions
can be thought of as descriptions from a privileged moment in 1 me, written with the
information available at that moment. Thus, 215t -4300 indicates the balance at the start
of the loan; 215{t - 10) -2150 indicates that $2150 are owed at the 10-month mark; and
215({t - 20) indicates that the loan was repaid after 20 months.

Symbol Manipulation
The traditional algebra curriculum has been roundly criticized for an emphasis on
"meaningless" symhol manipulation where students have no idea why they are rewriting

expressions or how to judge when their answers are valid. As a result, current reform

efforts {e.g., UCSMP) have tried to minimize or remove symbolic manipulation wherever
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possible. The UCSMP Algebra | text de-emphasizes factoring. The Algebra 1l text limits the
amount of attention to rational expressions.

Appreciating that different symbolic forms provide differant perspectives on the
same function, symbaolic manipulation takes on a different perspective. These
manipulations (in the case of tinear functions, the distributive rule) can help us demonstrate
to ourselves that two different expressions are indeed the same {in the sense of producing
the same output for the same input). In addition, and perhaps most importantly,
manipulation of symbols can sometimes lead to expressions that provide new insight into
the situation which they describe. Switching the form of the expression may highlight
information about a different point on the graph, a different aspect of the situation.

Notice, however, that symbol manipulation can be avoided. Knowledgeable readers
of the three forms described above might not need to use the distributive rule to carry out
a manipulation. They might be able to create alternative expressions for the same function
simply from information provided in a table of values. Thus, if the goai is to switch from
one known form to another, traditional symbol manipulation—using the distributive law —is
not necessary, though the law justifies why such a manipulation works.

Conclusion

At the confefence, Bob Moses made a series of powerful statements about
students” need to learn whatever symbol sense is hecessary to assure themselves
economic access {a moving target). As others (like Rogers Hall, Jim Greeno, and Alan
Schoenfeld) argued, at the present time, we do not know much about the facility with
algebraic representations that current jobs/professions require {let alone future ones). There
is also much that we do not know about helping students become fluent with these
representations (literal symbols, tables, and graphs). All of which suggests that we have a

iarge agenda on which to work.
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Algebra and the Democratic Imperative

Robert B. Davis
Rutgers University

The evidence is unmistakable: in the past dozen years or so, the United States has
become more of a bimodal society in terms of family income levels, and all the life
opportunities and constraints that that implies. We are becoming a two-caste society.
{See, for example, Danziger & Gottschalk 1993; Hacker 1992; Phillips 1990; Wilson 1987,
For other dimensions of the problem, see also Lemann 1991.) Clearly, this is not solely
attributable to education, but it is equally clear that education does play an important role
in this result. And, within education, the subject that is sometimes called ninth-grade
algebra plays a particularly decisive part. Acquire a mastery of ninth-grade algebra and
many possibilities open up to you, but they will be unavailable if you do not learn ninth-
grade algebra. This creates one more aspect of a caste system: those who know algebra
versus those who do not. We will pay a formidable price if we ignore this situation {see,
for example, Moses, in press).

1t is not equally clear how to address the problem. There are constraints on all
sides, limiting possible strategies for creating solutions. For some careers, a certain level
of proficiency in algebra is a true necessity, but what this level actually is is in doubt, and
many stated requirements probably go beyond anything that is actually needed (see, for
example, Noddings, in press). Existing instruction in algebra is often remarkably
ineffective, not merely as mathematics education but as education itself (see Davis, in
press). Better routes toward the learning of aigebra need to be created, but even here
there is not complete agreement on desirable directions for improvement, and there is an
inadequate research base for deciding, especially if one aims for the relatively new goal of
student understanding.

Perhaps above all, there is the structural peculiarity of U.S. curricula, virtually
unigue in the entire world, of employing the so-called layer-cake approach: algebra in
grade nine {or perhaps in grade eight], followed by a year of Euclidean synthetic geometry,
which is then followed by an additional year of intermediate algebra, and so on. Most

other nations arrange for students to study algebra beginning in, perhaps, grade two, and
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continuing on through grade 12. Clearly, a layer-cake approach, by making algebra an
event that occurs at a definite, pre-specified time, maximizes the risk that any particular
student may fail in this event; the risk would be far less if "learning algebra™ were an on-
going activity spread over many years, as the learning of language inevitably is. {Indeed,
as Rogers Hall has pointed out, wh&n one looks carefully at the expressive power of
algebraic symbolism, the simitarity to natural language linguistics is quite striking, and
comparisons with language learning may not be unreasonable. The meanings are complex
and subtle, even if the notations themselves are limited and orderly. Perhaps learning
algebra ought to take a considerable number of years.)

It is hard to escape the conclusions that U.S. curricula would avoid the "ninth-grade
algebra"” problemn—the fact that this specific school subject denies many students the
opportunity to continue further in mathematics--if the study of ailgebra began in, say,
grade two, and continued throughout the remaining years of education, as it does in most
nations today lthis is sometimes called the strands approach—different strands, such as
algebra, geometry, and measurement, extend over the years of schoaling; there is no
question of which comes first or which comes secand, etc.). Such a change may be hard
to bring about, which suggests a two-pronged approach: make whatever improvements
can be made, far a short-term remedy, but realize from the outset that more fundamental
change is really needed, and begin immediately to build toward this deeper change.

There is some foundation to build on, but more is needed. Fer what we do know,
consider the evidence acquired in other countries and, since at least the 1950s, also in
some schools in the United States (see, for example, Davis 1985). But if we intend to
continue our modern emphasis on meanings and understanding, we need to build a much
broader research base. Younger children can think profitably, even creatively, about
algebraic ideas, but their understandings must be developed carefully and gradually. (As
two examples, from among a great many, consider the case of a class of fifth-graders who

were unwilling to accept the statement
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as a true statement because, they argued, "for subtraction you have to have a common
denominator" —thereby confusing, as children often do, the truth value of a statement with
the use of some specific algorithm. Mathematics, for them, means "doing what you are
told, and dning it the way you were told to do it" —for them it does not deal—as it does for
mathematicians — with truth, falsity, and implication. This can be a very important
difference. (See, for example, Davis 1988) As a second example, many researchers
report, independently, that fifth-grade students who are abie to speak about specific
situations in almost-algebraic language —for example, "If the numerator is 1, you just
multiply the denominataor by 24" —often experience great difficulty when they try to write
this in something closer to algebraic notation {see also English, in press).

But perhaps this analysis provides grounds for optimism: there may be a sensible
direction for remedying the situation in a basic way, if we have the will to make a
commitment to doing so—and if we do what is needed in the areas of research and teacher

education, and in the area of creating appropriate curricula.
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Realism(s) for Learning Algebra

Rogers Hall
University of California at Berkeley

By setting out to redefine the role of algebra across the mathematics curricutum, the
Algebra Initiative has a huge agenda, and a great deal might ride on the kinds of consensus
that emerge from this group. In writing about an "appropriate algebra experience” across
the K-12 curriculum, ! want to feous on the role that realism can or should play in learning
algebra. But first | should describe the position from which | approach this question.

| teach graduate courses at the intersection of cognitive science and mathematics
education that are part of an interdisciplinary program in a school of education. My own
training is in computer science and psy~hology, where | have studied (a} how {or whether}
we can make sensible computational models of human reasoning and learning and {b) what
are good representational media for learning and doing mathematics. | have ended up
looking very closely at what people —some good and some less good at solving algebra
problems —do when they use representations to coordinate understanding and
computation. It turns out that people’s representational practices in mathematics are much
more complicated than | had imagined when | started trying to write computer programs to
model their activity. That's good for pushing along iesearch on cognition, and my own
view is that developing and testing curriculum materials provides a way to study
representational practices in places that can make a difference.

Two things, then, about how I approach this agenda. First, my background qualifies
me to drone on about the mathemnatical properties of programming languages or processes
constructed out of these languages, but my comments should not be read as coming from
a mathematician or a teacher or mathematics. Second, | want to position my work pretty
clearly within the political and technical agendas that Kaput and Lacampagne have
sketched for the working groups. From my perspective, teaching in a school of education
and doing research on 'representational practices in mathematics, the need for more and
better education in algebra or new forms of computing technology might seem like an

unalloyzd good thing. | don’t think this is necessarily true, however, and want to use this
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paper to think about where to push forward in either area. In particular, | will argue that
how we treat pedagogical realism has a lot to do with what we think mathematics is, why
algebra is important within mathematics, and how we should invest resources in changing
mathematics education.

What is a Mathematical Application?

As with Elizabeth Phillips® list of definitions for algebra, I've heard lots of variations

on what applied math problems are about:

. Oh, those problems (school alumni);

] Problems we never dc at the end of the chapter {algebra students);
L Word or story problems (psychologists);

'

Math problems with colorful pictures (a particularly caustic graduate
student); and
® Where you don’t learn about using mathematics, that comes later {alumni).
Before pulling apart historical views of particular kinds of applied mathematics
problems, | want to focus on a prior question: What kind of realism do we value i~
teaching people about mathematics, and in particular about ideas that are ceniral to
algebra? Since part of my life over the past 2 years has been caught up in an NSF-
sponsored Mididle School Mathematics Through Applications Project (MMAP 1992) at
Stanford University and the Institute for Research on Learning, | will draw examples from
my own research and from the ongoing experience of developing particular kinds of
applications, working with teachers to implement these units in diverse classrooms, and
trying to determine how things are going.

Reasons for Realism

| won’t worry much here about arguing for realism i'- teaching mathematics,
particularly since | think we should treat what "real" means as a serious design problem. It
should suffice to point out that most versions of individual or social constructivism {Cobb
et al. 1992; Walkerdine 1988; von Glasersfeld, Suchtung 1992}, psychological or
sociological accounts of mathematical knowledge and learning {Bloor 1976/1991; Kitcher
1984}, and reformist writing about the mathematics curriculum call for students to
encounter mathematical ideas in realistic situations. There are many, not entirely

compatible reascns for wanting realism: familiar constraints in the domain of application,
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the requirement that one find and structure an open-ended problem for solution, or
engaging student interest. Any of these could be important in working to overcome the bad

news about algebra that Kaputs position paper outlines.

Realism as a Comparison

For discussion purposes, I'll suggest a general frame for unpacking what we could
mean by realism by transforming adjectives like "authentic,” "applied," or "realistic” into a
more explicit statement like "activity X in school is like activity Y in Z, in the following
ways...". This is a familiar proportional analogy,

X :school :: ¥ Z

By thinking about realism as a comparison that places components from a source domain
{activity Y ‘n setting £) in correspondence with a target domain (activity X in a school
setting}, we can bring into relief the importance of relations between mathematical
activities and the settings in which they are pursued. Kaput {opening talk) emphasizes this
clearly by showing cognitive scientists and educators working to convert images of
mathematica! work outside school {complex problems, tools, skill, and communication
between people) into images of mathematical activity in school. By asking us to be explicit
about what parts of these images are being placed in correspondence, the analogy may
help us see what's at stake in claims about realism for the algebra curricula, at least from
the perspective of people who design and evaluate these matetials.

Treating realism as an analogical comparison, several issues immediately pop to the

foreground.

1. Applications are not just tasks (X's or Y's} but are activities that can have
complex relations to the settings in which people pursue them. This
assumes, of course, that we see an application as more than a pedagogical
vehicle for delivering a mathematical problem (discussed below).

2. It is not just that activity X is like activity Y, although this may be hugely
important. Instead, we also need to worry about whether the relation(s)
between X and school are like the relation(s} betweenY and Z. These could
include relations of accountability, ways of talking and writing about
mathematics, conventions for being right, done.

3. There are many activities in situ (Y/Z pairs) that could provide areas of

applications, and choosing among them requires deciding (a) what kind of
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mathematics we value and (b) what resources we are willing to deploy in
schools.

4. The mathematical structures that apparently underlie activity in situ can
appear similar for us, as designers, across school and application setting. But
why should we assume these structures will be similar for students and
practitioners in the area of application, a critical element in ideas about
transfer of training {Singley and Anderson 1989; Greeno, Smith, and Moore
1993)?

5. What are we saying about mathematics, its uses, and students’ access to
different forms of after school life when we carry one of these proportional
analogies into instruction?

These questions go beyond the scope of a short conference paper. In my view,
answering them in ways that are productive for the learning and teaching of algebra will
require research that examines possible relations between math in school and at work as
an empirical problem. To make the issues more concrete, however, | will consider two

instances of "mathematical applications™ that may help to exercise the framework.

Story Problems as Vehicles for Mathematical Structure

Mathematical "applications,” as they typically appear in algebra textbooks over the

past two decades (e.q., Mayer 1981), have had an almost universally recognizable form:

(CLOSURE)

Tom can drive to Bill’s house in 4 hours and Bill can drive to Tom's house in

3 hours. How long will it take them to meet if they both leave their houses

at the same time and drive toward each other?
This is a story or word problem typica! of many algebra textbooks, and one that many
people find very d{fficult to solve, since rates are presented as hypothetical events li.e.,
can drive to Bill's house in 4 hours) rather than constant values, and the distance between
Tom and Bill's house is not given. Now, this kind of preblem produces very "real"
difficulties for algebra students and their teachers, as evident in the following transcript
excerpts from research that contrasts how people with different levels of achieved
mathematical competence (i.e., levels of schooling} use different forms of representation to

solve these probtems (Hall et al 1989; Hall 1990}. K is an algebra student, taking courses
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in a community college in the hopes of matriculating into the University of California

system. R teaches algebra in a community college, though K is not one of his students.

K starts work on the problem with a drawing that weakly organizes given quantities.

After constructing "my little dirt table," her voice becomes progressively more tentative,

the pauses between her utterances elongate, and she wonders whether she is missing

something to "plug into that... table."

K: Tom can drive to Bill's house in 4 hoGrs, and Bill can drive to Tom'’s house in 3
hours. How long will it -ake them to meet if they both leave their houses at the
same time and drive toward each other? So we’ve got...Tom driving... Let's put
Bill's house here {draws box at left), and Tom’s house here (box to right). And...
Ok, so Tom's gonna drive to Bill's house... in 4 hours {draws a left directed
segment labeled 4 hrs)... it takes him 4 hrs tc drive there. Bill can drive to Tom's
house in... 3 hrs [draws right directed segment labeled 3 hrs)... He's got a better
car (both laugh). How long will it take them to meet if they leave their houses at
the same time and drive toward each other? Alright... my little dirt table here
(draws a 2 X 3 table, labels columns d, r, t}... Alright so we’ve got... Bill driving...
is that him going to his house? ... That's 3 hrs. Wait, let's rze, Bill... wait, that's
Tim’s house {laughs) but Bill’s driving there? Oh well, doesn’t matter, Tim is
driving... Let's see now, 1'm confused (mumbles while reading text}. 1n any case
they’re driving toward each other, it doesn't matter where they're starting from
actually.

Roagers: Um hmm.

K: QOk... umm... So Tim can drive in 4 hrs. Here’s Tim {writes T as row label)... and
Bill {writes other labell... So Tim... 4 hrs (writes 4 in Tim's rate cell)... We don‘t
know the distance. Bummer! {laughs) Ok, he drives in 3 hrs (writes 3 in Bill's rate
cell)... {long pause} How long will it take... for them to meet... if they leave at the
same time and drive toward each other? (long pause)

Rogers: What you thinkin'?

K: I'm v ondering if this is the right table, if its a distance table, because 1don’t have
all the information... that you would normally plug into that... table. I'm trying to

think if there’s another... um... no TRW form doesn’t work. That’s the... the work...
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Now for R, who regularly teaches algebra and has a widely reported reputation for
making algebraic concepts accessible to students. He also starts with a drawing, but
distinguishes clearly between rates as hypothetical events {e.g., a trip in 4 hours) and the
circumstances of collision that the problem asks about.

R: Tom can drive to Bill's house in 4 hours, and Bill can drive to Tom's house in 3
hours. How long will it take them to MEET if they BOTH leave their houses at the
same time and drive toward each other? COh, | like that, that’s a neat problem! And
| don't at the moment have any idea how to solve it.

Rogers: OK,

R: So I'm just gonna draw a picture. This is Tom"s house and this is Bill's house, and
Tom drives to Bill's house in 4 hours, so if he were going this way, it would take 4
hours to complete the trip ([draws and labels directed segment}. If Bill, on the other
hand, is going toward Tom, it takes him... 3 hours for the trip {draws opposite
directed segment and labels it}. Now the DISTANCE is fixed. I'll write myself a
note, distance is fixed (writes "d = fixed"). .

R: {reading) How long will it take them to meet if they both leave their houses at the
same time and drive toward each other? So we’ve got a situation in which one guy
is going this way and another guy is going this way {draws a second diagram,
below first, segments don’t close) and they meet somewhere. It won’t be in the
MIDDLE, because this guy takes longer to travel the same distance, so he will not
have... again, the amount of time they travel is the same, if they both leave and
then they meet, there’s a good joke that goes along with that.

These reactions are typical of what | call a gap between certainty and precision:
both K {student} and R (teacher) understand the situation presented by the problem
perfectly well, but they are momentarily (sometimes, much longear) at a loss for a way to
go about finding a precise value for the length of time it will take the drivers to collide,
The flurry of overlapping representational forms (talk, bodily activity, and writing or
drawing) that ensue make for a fascinating exploration of how various material and social
resources can structure mathematical cognition (Hail 1993), but | want instead to focus
here on how these problems present a particular form of pedagogicai realism.

Gaps between certainty and precision are a hallmark of applied problems in

conventional mathernatics texts, where assumed familiarity with the problem situation li.e.,
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relatively well-developed common-sense reasoning) is thought to anchor and guide
students’ developing understanding of mathematical notatiens and operations. Drawing this
problem across the frame of our proportional analogy (X : school :: ¥ : X), however, we
find an activity {two travelers instantaneously reaching uniform speeds} in a physical
setting (a road laid out in a straight line between two private residences) that could not
literally be familiar to anyone.

The problem is familiar to both K and R, but it is familiar as a school problem—
i.e., within our proportional analogy, this kind of realism maps the school domain back onto
itself (Greeno 1989). To their credit as adaptive participants in school math, people learn to
deal with these kinds of problems in classroom and testing situations. However, once at
work trying to solve such problems, they find it difficult to squeeze any meaningful
constraints out of the situation that will help them organize mathematical inference or
calculation. Rather than providing a "realistic™ context for traveling in vehicles, this story
prcblem and others like it simply provide a vehicle for delivering a mathematical structure.

As was pointed out in the keynote address to lnitiative working groups, it is
important to realize that mathematical forms have a history, and | will argue that the
CLOSURE probiem is just such a form. | would add that, once these forms are inserted into
the capital intensive process of producing: textbooks and assessments, they have an
historical momentum that is difficult to elude, whatever our beliefs about "authentic”
mathematics. In the case of algebra story problems, their history goes back (at least) to the
earliest known printed mathematics textbook in the West, the Treviso Arithmetic {Swetz
1987}, used to train young men (and only men, apparently) seeking careers as
"computers” in the expanding mercantile economies of Europe. Within the Treviso we find
a counle of couriers who appear to be the ancestors of Tom and Bill:

The Holy Father sent a courier from Rome to Venice, commanding him that

he should reach Venice in 7 days. And the most illustrious Signoria of

Venice also sent another courier 1o Rome, who should reach Rome in 9 days.

And from Romec to Venice is 250 miles. It happened that by order ¢f these

lords the couriers started their journeys at the same time. 1t is required to

find in how many days they will meet, and how many miles each will have

traveled. (Treviso Arithmetic, in Swetz 1987, p. 158]

39 4 -



Machiavelli, at the tender age of nine, had yet to enter government service, and
contemporaries only slightly older {aged 12 to 16} were facing story problems very similar
to those found in algebra texts we use today. According to Swetz, even these problems
had little to do with actual mercantile practices in the late 1500s, but readers of the
Trevisp were encouraged to study these problems and associated calculation schemes
{e.g.., the "rule of three things") to acquire essential skills,

As a carpenter {wishing to do wel} in his profession) needs to have his tools

very sharp, and to know what tools to use first, and what next to use, etc.,

to the end that he may have honor from his work, so it is in the work of the

Practica. (Treviso Arithmetic, in Swetz 1987, p. 101)

The role these kinds of problems might play in exercising generalizable algebrai;: skills has
not escaped psychologists, who have taken up story or word problems as malleable
experimental materials for investigating transfer and analogical inference {(Anderson and
Singley 1989; Dellarosa-Cummins et al. 1988; Hall et al. 1289; Reed et al. 1985). There is
also a line of work that takes the underlying structure of word problems as a basic
conceptual domain for understanding quantitative relations (Carpenter et al. 1984, Kintsch
and Greeno 1985; Vergnaud 1982, 1983], and these structures have been shown to be
learnable when madc explicit to teachers and students (Carpenter et al. 1389).

While these studies bring cognitive science and educational practice together in
interesting ways, they generally take realism to be an unanalyzed property of good
experimental or instructional materials. However, stretching story problems over a
proportional analogy that questions realism as a relation between school and some other
place, can we find any image of authentic mathematicail activity that these forms bring into
mathematics classrooms or testing situations? Rather than accepting the historical
momentum of these problems as curricular forms, we might ask what other forms of

realism could be productive in school mathematics?
Design Projects as Settings for Mathematical Work

As an alternative approach, | want {a) to sketch a different kind of mathematical
application, {b) to analyze briefly the kind of realism that it is designed to provide for
learners, and {c] to consider how this relates to "big ideas" in algebra that might take root

in elementary and middle school mathematics.
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This example is taken from field trials in an NSF-sponsored curriculum development
project for middle schooi mathematics (MMAP 1992}, where an explicit aim is to create
mathematical activities in classrooms that have specific relations to the mathematical
activities of professionals in design-criented waork {e.qg., architectural design}. Curriculum
units are developed with teachers, who spend time with math practitioners in field sites
during a summer practicum, help to write curriculum activities and design software with
our project staff, and then work with us to implement these units during the following
school year. All these applications units involve design activities in areas like living/working
space, ecological models of interacting species, or secure encoding schemes. In the
example that follows, | focus on early field data from one of these units, called the
Antarctica Project.

In MMAP classrooms using the Antarctica Project, students work in groups on an
extended project {4 to 10 weeks) where they desigr, models of living/working space using
computer based design tools (the ArchiTech environfnent} within a repeated cycle of
activities. During each cycle, students analyze a design problem {e.g., the needs of an
NSF-sponsored bioclogical research team wintering cver in Antarctica), they construct a
model that provides a partial solution to their analysis of the problem {e.qg., a structure with
sufficiant lab space and adequate heating for an Antarctic winter), thay avaluata this modal
in light of new or elaborated constraints (e.g., providing storage space for redundant
supplies and equipment}, and then they repeat the cycle with an updated model and design
problem. The interface of a computer-based simulation envircnment {ArchiTech) provides
students with specific representational systems (e.g., two-dimensional scale models and a
rudimentary database of basic quantities that can be used to describe these models) and a
set of tools for changing, recording, or analyzing the quantitative behavior of the medels
they construct, By porting data from the design tcol into a simplified spreadsheet
environment, related values generated during analysis or evaluaticn of a model can be
organized in tabular or graphical form, for presentation or comparison with alternative
models from other student groups.

The following memo is a Request for Proposals handed to students at the outset of

their design project:
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FROZEN SCIENTIFIC GROUP - MEMO 1

TO: Expedition Design, Inc.

FROM: Frozen Scientific Group
2550 Hanover Street
Palo Alte, CA 94304

RE: Request for Design Proposal

This memeo is a request for_a design proposal. We are asking for proposals from
several companies, and will accept the proposal that best meets our needs at the
most reasonable cost.

We need a design for a scientific research station en the Antarctic coast.
The site for the station is a small flat field of dry rock 17 meters wide and 30
metars long. The station should provide lab space, housing, and recreaticnal
facilities for four scientists, who will be studying phytoplankton. OQur project
will use the station for two years. Our funders are particularly concerned
that the design we accept is energy-efficient. Your proposal should reflect
that concern, while still maintaining overall reasonable costs. Attached you’ll
find a short description of life in Antarctica, which should give you a better
idea of our requirements.,

Your design propesal report should include a floor plan of the design, along witn a
proposed budget for building and heating costs over the two years. Of course, you
will want to include materials that explain why your design best meets our needs.

We lonk forward to receiving your prop'osal.

Studenis are provided with documentary sources about the continent of Antarctica,
the sometimes ragic history of its exploration, the rigors involved in wintering over at
coastal and central research stations, and why these settings provide such an attractive
site for biological and atmospheric research activities. Students are alsc encouraged to
expand their research and analysis activities using additional resources provided by their
teachers, school or community libraries, or parents {e.g., in some field trial sites, aduits
who work in architectural design visit the classroom and discuss the work they do}.

Students spend several weeks iterating through cycles of analysis, design, and
evaluation, using the ArchiTech environment shown below and a simplified version of a

commercial spreadsheet package.
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This screen shot shows a floorplan-in-progress from a group of four seventh-grade
students, just starting to use the environment. This software is intended to resemble
computer aided design (CAD) tools used by architectural engineers and has been developed
to support units like the Antarctica Project by a MMAP team of teachers, educational
researchers, and technologists,

Three modes of activity are supported in this interface: {a) design tools {not shown

in the screen shot) allow students to construct a scalable, multistory floorplan model out of
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local materials like walls. windows, doors, and different types of furniture; (b) analysis
tools {sliders to the left of the floorplan in the screen shot) allow students to vary a
collection of quantitative parameters that determine global properties of the model such as
inside or outside temperatures and the insulation rating of various surfaces; and (c) a
'display window (floating window at the bottom of the screen shot) allows students to
selectively examine the value of named quantities for temperature, spatial features of the
design, the cost of materials, and heating cost. Values displayed for a particular,
parameterized version of a student model can be saved in a tabular display and, along with
names for quantities, these can be copied into a spreadsheet environment for constructing
and examining more complex quantities {e.g., total cost to build and heat per unit of floor
areal.

We have found that middle school students energetically engage in the process of
constructing models of living space (in the Antarctica unit and other design problems) and,
with guidance provided by teachers and supporting curriculum materials, their design
activity can be used to draw out relevant mathematical questions {e.g., exploring relations
between the perimeter and area of & closed figure) that students can then investigate using
these same design and spreadsheet toals.

The following transcript illustrates the character of group work in this environment,
drawn from the same group of seventh graders asked to work on a different design
problem, which we piloted as a performance-based assessment at the end of the
Antarctica Project. They were given an eXisting design for a dormitory in Seattle,
Washington and asked to redesign the facility under overall cost constraints for the much
colder climate of Duluth, Minnesota. G and Z are boys who in this excerpt take
responsibility for using the mouse (the primary input device for ArchiTech! and a hand-held
calculator {although given the option, no group of students used a spreadsheet available as
a background process during this task). T and S are girls, and while not at the controls of
either device {ArchiTech or the calculator), they have argued for reducing building costs
since this working session began.

G: Is this {heating cost) 427

T No, {points at display window) you do 38 times...
G: Twelve.
z Times... Oh, no, no, no. Its, = =um... 12 times 25 ... right? | think its 300. Yeh,
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S:
T:
Z:

that’s right. Times 38. .

That's PER MONTHI

If its $42 dollars it'd be 12 ... {looks down at design brief)

{sharp intake of breath] Its WAY more. These cheapskates! We're gonna have to
make the (points to design cost in AW) design costs less.

| know. How about, this is a cheap college!

Its $14 over.

(looks from calculator to screen) Maybe (littler windows).

How about we make, delete THAT door {pointing). We don‘t need two windows, 1
mean two doors. ‘

(leaning in) We don’t {inaudible).

We don’t need that many windows either!

Yeh, all right {points at floorplan). Delete a door.

Withcut unpacking more complex analyses of these students’ modeling activity in relation

to task structure and representational media available in different design environments

(Berg, Chiu, and Hall, to appear], | want to draw attention to several preliminary findings

about this kind of interactive work,

. Cycles of activity in design work (i.e., considering alternatives, making a
change to the structure, and evaluating its consequences) appear to be
organized, repeating at a surprising (for us, at least) rate of every 30 seconds
or so in the groups we have been studying. We take this as evidence of high
levels of engagement on the part of some students.

. Activity at the interface {pointing, running the mouse) are important in group
work but do not determine what happens in the final group solution, since
students who appear to be at the periphery of the action can play a
determining role in proposing or evaluating changes to a final design.

L) Talk and inference about quantities and their relations are strongly dominated
by the interface features available to students (e.g., selecting named
quantities, setting their values, and reading off outcomes from the display
window],

L] More systematic investigation of relations between quantities ie.g., outside

wall/rocf insulation and the long run cost to build and heat a structure over
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time) sometimes occur during the course of design activity. However, these
spontaneous mathematical investigations are rare, so our curriculum needs to
deliberately propose activity structures that call for them.

Returning to the proportional analogy used to think about the realism of algebra
story probleims in the preceding section, my analysis of an "application" like the Antarctica
Project is that we are able to bring a complex image of the relation between mathematical
activity and design work outside of schoo! {Cuff 1991; Gantt and Nardi 1992; Henderson
1991:; Nardi and Miller 1220, 1991; Suchman and Trigg 1993) into a middle school
classroom in a way that preserves aspects of the workplace that we think are likely to be

important in learning about mathematicat problem solving. At present, these aspects

inciude:

L] Mathematical problems emerge in functinnal contexts (i.e.. mathematics is
for something that students are otherwise workirg on).

® Social relations of accountability are built into the activity, in this case a
competitive bid structure across student teams and natural divisions of labor
within groups according to student interests and skills.

L ] Traditional symbolic notations for managing quantitative relations are mixed
with a heterogeneous collection of tools (e.g., CAD and spreadsheet
software) that present a variety of representational systems (e.g., linked
scale models, a rudimentary database of named quantities, tabular arrays,
and linked graphical displays}.

e The extended scope of these design projects, by comparison with traditional

mathematical applications, provides for sustained work on problems that
have more than one solution and encourages studants to treat their thinking
as a valuable historical product.

These are complicated claims. and we have quite a ways to go before presenting a
rigorous empirical evaluation of ther validity. However, we feel this approach is certainly
richer in possibilities for realism than disembodied travel on imaginary roads in the service
of delivering a single mathematical structure {e.g., the CLOSURE problem). As we learn
more about mathematical activity in actual work settings, another line of research that
moves beyond the scope of this paper (Hall and Stevens, to appear}, the aspects of

"realistic” mathematical activity we try ta reconstruct inside classrooms will no doubt
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change our view of what the curriculum should centain and how we should evaluate our

students’ learning.
Mathematics Incarnate

| want to &nd this short paper on realism with another analogy. Consider for a
moment all the mathematical activity that goes on across this planet on some particular
day, say a typical weekday but not over the holiday season. Let's say this corpus is made
up of lots of little parts, problems solved here, arguments made there, demonstrations
upheld or overturned in various places where people find the need to argue from necessity
about this quantity or that relation. If we think about this corpus as an organism for a
moment, the active body of mathematics incarnate, what parts of it do we really
understand? At an assembly like this Algebra Initiative, or in the research and teaching that
many of us do, -which parts of the organism are we talking about, how broad is the scope
of our analysis, and how much do we understand about how to reproduce this organism?

When | think about this honestiy, | have to believe that we are really only scratching
at the surface of the organism, maybe at the toenails of the body of mathematics, as it
actually unfolded on our typical weekday. Some would prefer to think that we are working
closer to the head of the organism, maybe studying how higher cerebral functions play out.
But in any case, our view of what mathematics is, how it works, and how it changes is
necessarily partial, usually static, probably self-interested, and even sometimes nostalgic.
If there is a body of mathematics in daily activity, it keeps moving, it is shaped by what
people actually do, and the ways in which they are able to share their work. My hope is
that we will get better at finding and using images of real mathematicatl activity when

teaching our children what this body is about and how it is changing.
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Algebra, The New Civil Right

Bob Moses
The Algebra Project
Cambridge, Massachusetts*

| would like to put out some ideas which face us, face the country, and also, of
course, face this group. | find it ironic that mathematicians should be so centrally placed in
a national issue. It seems that history has done you a disservice. It has put to you a task
for which you are not prepared. Mathematicians would be the last people that | would turn
to to organize the country. And yet, that’s what it seems you have to do.

One way 1 think about the situation we're in is that we have this kind of moving of
the plates which is associated with earthquakes. These plates move and sometimes they
lead to these earthquakes and houses fall down and people get dislocated. So it seems
that we are living in a time when two technological plates are rubbing up against each
other, living through some of the earthquake-type phenomenon which has resulted from
this—the movement from industrial tecniology into a new information age based upon
computer technology.

There is a lot of social dislocation which is happening because of this kind of
earthquake-like phenomenon. At teast, that is how | see it. So, it's again ironic that the
new technology puts mathematics and science into front and center and, therefore,
requires that mathematicians play a role in stemming this social dislocation for which they
were not prepared. How shall we characterize this? One way that | think about it is that
there is a literacy issue for citizenship. | view myself as working in a tradition in the Civil
Rights Movement which is nat really well known. How many people here saw "Eyes On
the Prize" or some segment?

Well, "Eyes On the Prize" is a documentary of the Civil Rights Movement. It was a
6-hour documentary dealing with the Civil Rights Movement in the early sixties put on PBS

about 3 or 4 years ago and is replayed every year. You really need to see it. It usually

*Taken from his address at the SUMMAC Il Conference held on November 6, 1893,
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comes cn in February, Black History Month time, but other stations do it at different times
around the year. So you need to keep an eye out for it.

"Eyes On the Prize” puts forth a certain myth about the civil rights history. 1 think
of it as our first visual history book. It's a product of the new technology. I puts forward
the idea that we might have different kinds of people being historians; that the person with
the camera will also be an historian of the future; that the new technology allows us to
record enormous amounts of visual data in small spaces, and opens up the issue of "Well,
what is a history book?".

. I mention it because | took issue with Henry Hampton who developed "Eyes On the
Prize." | said, "Look, Henry, there is a part of the history that you are not telling." Henry's
point of view was that if someone didn’t capture it on film at the time in which it
happened, then it didn’t happen That is, you couldn’t tell about it. You couldn’t put it in
an interesting way on film to a mass audience. So, the "Eyes On the Prize" visual history
book tells one myth about civil rights history. And it is a myth which deals with the
history of great campaigns, March On Washington; Birmingham; the Voting Rights March
in Selma, Alabama; Albany, Georgia; Freedom Summer—big campaigns of the Civil Rights
Movement —and the person who came to symbolize such campaigns, Dr. Martin Luther
King.

There is another myth about that history, and | consider myself to be a part of a
legacy of that myth. That's a myth Jdealing with the organizing aspect. The part that did
not get on film. Remember in the 1960s the nation was cutting its teeth with its TV
programs. S0, you had three major networks, and they were learning how tc do TV. They
learned using the Civil Rights Movement and its campaigns. But they did not pick up the
organizing efforts which undergird those campaigns, and that’s the tradition that | came
out of.

Ella Baker, who was the person who helped found Dr. King's organization, sort of
provided the model for us. The idea that leadership could be found in and among what we
call grassroots people. That it was important to keep working with grassroots people to
help develop the leadership from ameong them. That is the tradition that | came out of in
the Rights Muvement. It's an organizing tradition. It's a tradition which tries to stake out
some problem around which there is consensus and builds to see if there is a way to find a

solution to the problem.
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In those days the issue was the Right to Vote, the question was Political
Access, and associated with both of these was a literacy question around reading and
writing. In these days there is another issue which is math and science literacy. It is
associated with, not political access, but economic access. At the center of it as it is
constituted in our society are you folks, mathematicians, and the question about algsbra. |
look at the work | am doing today as a continuation of the work that we did in the sixties.
That is, certain people in Mississippi were serfs, people who were living in serfdom on
plantations. They basically had no control over their lives—their political lives, their
economic lives, thair educational lives. So, within our industrial society we had this sort of
microcosm of serfdom that we permitted to thrive, and the movement used the vote and
political access to try to break it up.

It seems to me that we are growing these serf-like entities or neighborhoods within
our cities today. We have within our midst, | think, a process of criminalization of our
neighborhoods. | find an analogy to that with what we found in the Mississippi Delta
plantations. We learned some things that we could do to change Mississippi. One of the
things we learned was that if somehow there was a consensus that everyone agreed that
we should do item "A," this consensus provided some base for strategy and action to try
to work our way out of the problem. What everyone agreed to in Mississippi was that the
vote would help.

So for a short period of time, all of the people who were acting to try to change
Mississippi agreed to work together on a comnyon program to get the vote. That enabled
us to get resources from around the country to come and work with us, because they
could all work on the same program.

Now, it seems to me there is a similar type of agreement today around math. That
is, everyone agrees that if we can teach these children this mathematics, and let’'s suppose
we agree about what the mathematics is, but if we can teach these children this
mathematics, then we ought to. There seems to be universal agreement about this, that if
we can do it, we ought to do it.

That's a basis. If we can get some ccnsensus about how to work this, and
granted, there is the issue that Paul Sally raised about "keeping the math honest" and the
issue about "a truly objective standard,” | think those were his words. But | think there is

an opening here if somehow we can get consensus, ancd you people here are critical to the
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fashicning of such a consensus. So, 1don't want to let you off your task. That is, itis
really critically important that you fashion a consensus. It isn't fun and games. And no
one else can do it. For good or for bad, this ball has been tossed in your laps. Itisn't
something | would have chosen to do., As | said, the mathematicians really are not
prepared for this job. Your training as mathematicians didn’t prepare you to organize.

But, the first job of the organizer is to flesh-out a consensus. You cannot move this
country, unless you have a consensus around which you are going to move them. The
country’s too big, too huge, too diverse, too confused. Now, that’s part of what we
learned in Mississippi. We learned, and | am saying we learned it on the ground...running.
We learned that if we could fashion a consensus which everyone agreed about, then we
could get resources and develop strategies to try to work our way out of this situation.

Now, that's one thing, this legacy and a parallel between it and the situation we
were in Mississippi, and | am just trying to show you how | look at this, these issues, and
the right to vote; and political access; and political freedom; and this situation we have in
the country; and the idea of citizenship which now requires, not only a reading/writing tool
but a math/science tool.

The subject of math literacy and economic access, that is how are we going to give
hope to the young generation. |think of them as imploding. Los Angeles exploded for a
brief second and everyone got concerned, concerned about the trials and all of that. But
those of us who live in these neighborhoods, we are watching them implode all of the
time, everyday. They are imploding. The violence and the criminalization is people eating
each other up inside. There are all the issues about band-aid solutions, about how do we
patch up, how do we build inore jails, how do we put more police on the street —working
at the problem from the back end to try and keep it manageable—keep the lid on. But
working it from the front end to try and put something in place which we know has to be
put in place if there is going to be some light at the end of this tunnel rests with us. The
{front end of this problem rests with the people who hold the key to the mathematics
education of the youngsters.

That's a new problem for you. It's a new problem for the country. The traditional
role of the mathematicians has been to find the bright young math potentials and bring
them to your universities and help them become mathematicians and scientists. It hasn't

been a literacy effort. There is a difference between doing projects and doing systemic
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change. As a country, we don't know how to do systemic change. We don’t have any
track record. We can’t point to any school system where we put through systemic change
around the math education in that schoal system,

How are we going to do that? That’s the issue that confronts us. | think the first
step is to try and get hold of that as our issue. That's our problem and it is related to the
much larger problem which is facing the country because it’'s in part going through this
technolobical shift which is shifting the ground out from under us. My generation, we
grew up with the metaphor of £ pfuribus unum: Out of many one. If you remember, those
of you who saw "Eyes on the Prize," the metaphor at the beginning of each series is there
are black people marching and then they change into the American flag. That’'s the prize.
The American flag.

We were the last generation that had our eyes on that prize. The Civil Rights
Movement was the last movement in this country to believe in the melting pot. That we
were to create in America the identity of this American who is fashioned from all of the
different peoples, somehow a new person, an "American" was to be created. The
generation coming up now, they dont have that metaphor. They don't have any
metaphor. That’s part of their problem. That's part of our problem. They are a generation
which has to create a metaphor of what it means to be an American. Does an American
speak Spanish and no English? Does an American speak Chinese and no English? s it
possible to take many different peoples and find some common identity? That is, if we are
going to retain our different cultural heritages, is there some unity in all this diversity? Is
there enough there to hold the country together? It's a different question that this
generation has to wrestle with. And it's a question that’s driven by the same forces that
are driving math to be a centra! element of school education aiong with reading and
writihg.

These are very deep problems. They are not going to be solved over night. But the
question is, "Is there some strategy that this group has for making sure its contribution,
which really now turns out to be central, counts?”

There is discussion ahout process and the National Council of Teachers of
Mathematics {(NCTM} Standards. Irvin Vance said that one of the good things about NCTM
Standards is that they raise the question about math for everyone. The technological shift

is also a shift from technology that deals with physical work to technology that deals with
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mental labor, mental products. You have in the industrial technology, machines'trying to
routinize physical labor. But computers aren’t doing that. Computers are dealing with
products of the mind, forcing the issue of critical thinking, because you are no longer trying
to get the kids to learn how to do the "purple sheets," as Irvin said, "the drill and kill."
Computers are forcing on education the issue that it has to produce graduates who can
think in a critical way with qQuantitative data. This brings in process and something like the
NCTM Standards.

So, we are not going to escape from this issue about process. But are we going to
be able to handle it? Because if you say that, well they have to get tc’) the content at some
time. Who are we g_oing to look to to tell what that content is, if not this group here? But
do you have a consensus about it? Do you have some idea about what that content needs
to be so that the children on the receiving end are viable? We are not just talking about
professionals and jobs, we really are talking about democracy and citizenship. What is the
content of the democracy going te be in this country?

These are heavy issues to lay on a group of matnematicians. But it seems again
that history has played this trick on us and put mathematicians in this sort of critical place
around the question of the democracy of this country, because this math/science tool is
really assuming as important a place as reading and writing assumed in the old
dispensaticn. And those people, we know who didn’t have that tool, they really were not
citizens.

Just think about Washington, DC. On the TV last night | think they said the murder
toll had gore up to over 400 and nobody blinked an eye. They have these schools and the
principals are saying, "Can you really expect me to secure this school?”. 1t's not
conversation about education, it’s conversation about this criminalization of the schools.

1 should say a word about the Algebra Project because | am able to come here and
talk to you like this because we have this Algebra Project.

My family had been living in Tanzania for about 6 or 7 years, fleeing the political
events of this country, Three of our children were bern there and our youngest daughter,
Malaika, was born in June of 76 about a month after we came back. We wanted to put
our children in the public school system, but we wanted the school system to work for the
children. So, within that arrangement my job was to lock after their math. So, 1 undertook

to working with the children as they went through the grade schoo! years with their math.
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We have two girls and two boys. Maisha is the oldest and Omowale, who is next, is here
with us. | have to warn you he plays basketball.

We had a long discussion this morning about athletes. He is also trying to do a little
math while he is here at GW |George Washington University}. But there is an issue about
coaches and math which surfaced this morning. Let me just say, when that issue
surfaced, people were saying that the reason they use coaches to teach math is bacause
iney need math teachers. | stood up and gave a comment, an elliptical response that no,
the reason they use coaches to teach math is because they think that they don’t need
math teachers. So, therefore, you can use a coach to teach math.

| was serious. Part of the reason we are in the trouble we’re in is because we don't
train elementary school teachers to be math teachers. So we use coaches.

Anyway, Omo and | have slugged it out over the years about doing his math and
whether he had to be in the same math course that the other guys on his high school
basketball team were in. Why should he be in a different math course than the rest of his
teammates? If it was okay for them to take a certain course, why wasn’t it okay for him?

So the Algebra Project grew as a family project. We slugged it out in the family.
Woe're still slugging it out.

Then it got into the school system when my oldest daughter was ready to do
Algebra, and they weren’t offering it, so in a nutshell, | went into the classroom. | was
able to do that because | had a McArthur Fellowship that came through at that time in
1982. | used it to teach Algebra. | went into the classroom for b years with that
fellowship and taught Algebra as a parent volunteer to Maisha and Omo and then Taba and
Malaika. To all my children and all of their classmates. Out of that then came the
question of who takes Algebra, who gets access to Algebra, and how do we address the
question of math literacy. QOut of that came the Algebra Project which now has spread
around the country and is trying to take root in different cities around the country.

| suppose if | think about it, | would think of it in a metaphor that the project is sort
of like a 'young kid who is trying to stand up and is teetering and falling down a little and
getting back up, falling down a little and getting back up. What | hope is that the project
has the same kind of perseverance that makes young children keep getting back up. And

then the same kind of perseverance that makes them eventually walk. So they keep
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walking until they learn how to walk. It docsn’t really matter how many times they fall
down, they keep getting up and walking.

P-obably part of the reason that happens is they have a iot of people around them
who are also walking. Unfortunately, we don’t have that in the Algebra Project. That is,
there are not a lot of projects around which are locking at this issue of literacy and how
you make systemic change in schools. | am hoping that the project will have the kind of
perseverance that young people have so that it will keep standing up every time it falls and
eventually learn how to walk.

In the Algebra Project we do training. As Paul Sally, who helps us in Chicago,
reminds us, there are two types of training that we need to do. There is training in specific
curriculum, and for us we have cur own little curriculum in which we do some training.
Then teachers need training in the background of mathematics. Paul has helped on this
second issue; he has his own history, as you know, of training teachers. But he has also
been working specifically with Algebra Project teachers in Chicago. | would like to raise
this issue with you because there is a specific questicn: How can the mathematics
cemmunity relate to a project such as the Algebra Project?

Paul has two courses which he has developed, one on number theory and one on
geometry. He offers each in 10 sessions, across the spring semester to middle school
teachers in the Algebra Project, He cffers it to other teachers as well. These are courses
which are trying to address the issue of how middle school teachers fill cut their
mathematics background.

Part of what is driving this for the teachers is that the Algebra Project raises for
these teachers the need to fill cut their mathematics background in erder to successfully
engage the Algebra Project in the classroom. So the question is: Can we develop across
the country a network of people in the mathematics community who would weark on this
kind of issue? In this instance, we are trying to pull together a seminar in the summer
where we get mathematicians who come tc the University of Chicago to sit down in a
seminar with Paul and logk at the issue: How can we develop courses or procedures or
methods for doing the second kind of training with middle school teachers, in this case, in
the Algebra Project? That is some kind cof netwerk around the ceountry. So this is one of

the projects that the Algebra Project is trying to do. | think that | will stop here.
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Question

Is the Algebra Project about Algebra cr is it preparing students to be able to
succeed in Algebra and, if so, what is it in the students that you are reaching to that the
rest of us haven't been?

Answer

What is Algebra? When Omo was a sophomore and he was in Cambridge High
Schoal and he was taking Algebra I, of course he had taken gecmetry as a ninth grader
because he had passed the citywide test for Algebra after his 8th grade, he came to me
and he said: Why do | have to do Algebra 1l because all the other players on the basketbali
team are not deing Algebra lI? Why do | have to do this?

We had it out head to head that this is what you have to do. You need t¢ come out
at the 2nd of high school with your college basketball scholarship true, but you've got to
be ready to go into college with the kind of background in these kind of subject areas.

There has got 10 be a product on the other end from my point of view. In other
words, there is a way for the project tc fail. If the project doesn’t get students who go
through the college-prep math sequences and come out on the octher end and enter college
ready to do mathematics for which they can get college credit, then it fails.

To do that, we are making an interventicn at the 6th-grade level. For historical
reasons, it began at the Gth-grade level. | think of the intervention as an intervention
which is saving, if a student can count and if we can get their attention, then we can get
them on this college-prep track. The hardest thing is to get their attention. But if we can
figure out a way to do that, then there is a way 1o get them on the track where they can
get through their middle school years and get ready to do the college prep math sequence
in high school. That’s the goal. That’s what we are setting out as a goal. We are saying
that this is a goal for all of our students. That is, there’s got to be a fleor. It's not the
ceiling. It's the floor. We're not saying anything about the 2 millicn that | just heard we
have in this country who are gifted and talented students, and we are not doing right by
them.

| am not saying anything about what should be done for the 2 millien. !t's not the

ceiling, it's the floor. We are trying to say we need to put a floor under all these students
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and the floor, as | mentioned, has to do with these enormous issues about citizenship and
democracy.

Content-wise what we have said is that at the 6th grade we are trying to help
students get a more general notion of number. So if you just look at what is driving the
6th grade curriculum, it is the idea that in arithmetic, students have a question in their
mind about numbers which roughly is a "How many?" question. They pick it up when
they learn how to count, how many fingars, how many toes, and we're trying to put
another question in their mind about number which roughly is a "Which way?" question in
a directional sense.

Having a more complex set of questions around their number question, we are
trying to change their mataphor for subtraction and addition. So instead of having a "take
away" metaphor for subtraction based on a "How many were left?" question, we want a
metaphor for subtraction which is based on a comparison in opposite directions. How do
we get direction into their subtraction concept and into their addition concept?

| really dont care whether people say that's Algebra or not Algebra, that's what we
are trying to do in the 6th grade. We are trying to get them to make a shift in their number
concept and in their subtraction and addition concepts. Then we have some other stuff
we 1ry to follow that up with: multiplication and division in the next grade.

This floor, the college-prep math sequence, is itself a moving target. But that's
okay. The image | have here is that if you are trying to catch a bus that is moving, you
just can’t stand still and as it passes by try to grab hold. You'll loose an arm in the
process. What you've got to do is as that bus is coming, you start running. And if you
get close to the speed of the bus, then you can hop on.

The students today have got to hop onto one of those college-prep math sequences
that are out there now. If they don’t, that other one you guys are trying to think of as the
one that should be in place for the 21st century will whiz right on by them. They won't
have a chance in the world of getting on to that.

So in our program, what we are saying is that we need to get the kids ready for
whatever is out there, they need to lock in on the idea that they should do the college-prep
math sequence, and they keep locked in on that like some laser beam. However that
sequence changes, however it evolves, whatever kinds of transmutations it goes under,

they stick with it. And they pass the word on that this is what you've got to do.
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We're just saying that this is the floor. It's got to be done. Currently 11 percent of
the students in the country finish pre-calculus and 3 percent of those do calculus. We are
saying whatever that is, that's the minimum. Everybody needs to do that. The country
has to take sericusly that this is now a literacy effort. It's not creaming. Everybody has
got to do that.

So, here you come to a great crisis in belief. Who believes that all these kids can
do this? The only thing that has given us some play is that we stepped in there with a
little piece of curriculum at the 6th-grade level and said hey, these kids can do this much.
And, if they can do this much then they can think of themselves and we can get them
moving to do this much more. So that’s my answer to that question. I'm not sure if it’s
an answer.

Question

In short, is there some elaboration on this which is available in published form,
either some materials that you have developed or something that someone has written so
that we can learn more about what it is that you are doing on the ground?

Answer

I will give out a phone number, but be warned we are not heavily funded. So, our
office staff in Cambridge is really bare bones. The number is (617) 491-0200. That's the
phone number of Algebra Project, Inc., which is a lit.tle small group at our central office.
There is some literature which we will be glad to send you. We don’t have back logs of
the student text. There is a student workbook and text. What we do is negotiate with
school systems who want to do the project so they get a copy and then they print it
themselves. | don't know what would happen if we got an order for a large number of
those textbooks., We are not really equipped to handle that.

There is another problem which is serious and on us. What happens to these kids
in high school? 1t is the universities that have whatever kind of contact is going on with
the high school teachers of mathematics. We are not even thinking at this point about
trying to look at high school curriculum or training high school teachers. We can’t do it.
We're nol equipped to do it. So, how can the university communicate with
mathematicians? How can they help with this issue of working the high schools? Those

are two really concrete issues that | think this group could help us with.
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Question/statement

First, just a little story which perhaps might amuse you, when | told my husband
that | was coming here to listen to you and have lunch he said with a smile, "You know
that man is upsetting a whole neighboring state: Mississippi.” He grew up for decades
with Arkansas second to the bottom in education, literacy, per capita income, whatever.
Thg saying was "Thank God for Mississippi." He said, "Bob Moses, he’s going to upset
thi\s apple cart!," by the extraordinary work that you are doing in Mississippi. So that was
a backhanded compliment.

Answer

Well, we might work in Arkansas.
Reply

Well, that was his next statement. Please come to Arkansas., Being a non-
mathematician, one of the things that | have truly admired and respected about your work
is that you have taken mathematics, through your work in using non-mathematical
methods and areas and disciplines, and have made math more a part af a larger learning
process. | was just wondering whether you had any plans to work with that non- ‘
mathematical world in a greater way to make it even more an integrated kind of studies.
Answer

There is an effort. We have a curriculum which we are getting ready to try to pilot
which is called an African Drum and Ratio’s Curriculum. The idea in this curriculum is that
children learn certain competencies on the African drum, and some of the African drum
family. Then they try to abstract certain mathematical concepts out of these practices.
We are targeting that for 4th and 5th grades. In doing that we are thinking that this could
drive a larger integrated curriculum. There is the obvious area of selecting some African or
Africanf/Caribbean culture which becomes a part of the study at that grade level.

Then there is the issue such as information systems. That is, the drum is an
agncient system of transmitting information over distance. Therefore, it opens up the idea
of a larger look at what are the different ways in which information is carried today as a
part of a larger interdisciplinary structure. There is also the guestion of rhythm,' which is
so prevalent in music, and also in science and in life in general. So, how would you use
this as a way to drive an interdisciplinary curriculum at that grade level around those

concepts?
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We are trying to see if we can get some funding to actually do a training this
summer. We figure we need at least 8 to 8 weeks to do a training to try to develop a
basis for that as a pilot.

This raises the general question about how to teach math. There was the question
this morning about process and the NCTM Standards. If you think about epistemology and
how to go about teaching math, I think we inherited a way of #pproaching it which says
that we should start with what is simple. The problem is that most of what is taken as
simple is also very, very abstract., The idea of building the mathematics curriculum around
what is simple and abstract is one approach. That is not the approach which we are
taking.

The appro‘ach that we are taking is along the other axis. That is, if you think of
simple as opposed to complex, and abstract as opposed to concrete, we are looking to
develop curriculum which finds the right level of complexity in concrete events. We are
not building the curriculum around concepts which are simple and abstract. We are trying
to build a curriculum around events which are concrete and complex. And the question is
the right level of complexity.

So, when you look at this as a jumping-off point for curriculum, then you are in very
different terrain. The question then is: What are the concepts that you want to teach and
what are the events which can be the jumping-off point for those concepts? It is in that
sense that we are trying to engage the non-mathematica! world, as you call it, in a very
general sense in this curriculum process. We are just exploring this. We have just, sort of,
gotten our toes wet about how to go about developing this kind of curriculum.

It would seem that one of the advantages in doing this, or approaching curriculum
this way, is that you have a chance at getting the student’s attention. Then the issue is:
If you can get their attention, how do you move them through to get the mathematics out?
What we have done is maybe unique.

| came across the literature of the philosophy of mathematics in the writing of
Quine. Some of you know Quine, he is a math logician at Harvard, Emeritus now. In his
writing he talks about mathematical logic as involving a regimentation of ordinary
language. So, he speaks about regimented language and regimenting ordinary language to
develop the language of mathematics. There is this famous debate between Quine and

Alonzo Church. Church is a math logician at Princeton, or at least he was when the
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debate was going on. They were arguing about the existential quantifier. Church was
taking the position that the existential quantifier acquires its meaning from the axioms in
which it is embedded. Quine was taking the position that the existential quantifier acquires
its meaning from the logician who had in mind the ordinary language there is something
such that and that’s how it gets its meaning.

1 look at that discussion of Quine and Church as the 20th century version ¢ the
19th century discussion between Hilbert and Frege. Frege, who was the chief logician in
the 19th century, wrote to Hilbert that the axioms of geometry are consistent because
they are true. Hilbert wrote back and said, "My God, for as long as | have been teaching, 1
have said exactly the opposite. The axioms of geometry are true because they are
consistent.” It was Hilbert’'s point of view about mathematics that won out. Church then
inherited Hilbert. So the meaning of the existential quantifier is embedded in the axioms.
Quine is inheriting the 20th century version of Frege. Quine doesn’t believe truth as Frege
saw it. He has his own version of truth, but he is saying that meaning is attached to
language and discourse and so forth.

The version of math that is taught to the kids in the school began after Sputnik in
1957, | was teaching at Horace Mann when Sputnik broke out. Right after Sputnik in
1958, | used to go down to Columbia University when Professor Fehr was holding forth,
teaching students math and so forth, and | was a teacher from Horace Mann going down
there to do courses. | was looking through the School Mathematics Study Group
{materials} and Max Beberman’s mathematics reform effort, the Madison Project and the
Syracuse project, and 1 was taking all of these back to my classroom at Horace Mann and
doing them with the kids. Looking back on all of that work, that work was predicated on
the line of thought coming from Hilbert and Church and those people on the simple and
abstract. '

So, Beberman was actually teaching the children about equivalence relations: that
they are symmetric and transitive, and reflexive. He was building the integers by
partitioning the set of natural members and ge tting your ordered pairs of integers from the
equivalence relations. | actually taught a course at the 9th grade level. | was moon
lighting those texts, so | took Beberman's text out and had the 9th graders doing
equivalence relations of all kinds, and this business about partitioning the set in

constructing the integers. So, that’s one approach.
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The Algebra Project is looking at a different approach. It is not the simple and the
abstract and consistency, but complex and concrete and truth. Science has these.things
which they call observation sentences. Physics may have these big theories and so forth,
but it’s got to have some kind of observation sentence against which you tast these
theories. My thinking is: How do we get the kids to develop a set of observation sentences
which are the grounding for more abstract mathematics? Every Algebra textbook in the
first few chapters has this little sentence "A minus B = A plus the opposite of B." The
book somewhere says, in algebra, subtraction is the same as addition, more or less. The
student, of course, has been spending years learning that that's not true. The student
learned that subtraction is one operation and its metaphor is take away, while addition is
another operation and its metaphor is piling stuff on. The book never says how these two
metaphors are related. All the book says is that this syntax over here can bhe changed to
this syntax over there. So that book is, in my mind, in the Hilbert/Church tradition, of the
simple, abstract, consistency. It’s not in the tradition of Frege, Quine and looking at truth.
It doesn’t give the kids anything. That little sentence | look at as a high level theoretical
sentence in the Algebra | textbook. It’s not an observation sentence. There's nothing that
fche kid can take from that and go test it against any experience and see whether or not it's
true.

My problem is: How do we provide for the students a whole complex set of
observations sentences out of which they could abstract this high level theoretical
sentence which is "A minus B = A plus the opposite of B."? The kids need truth and
experiénce. They need some level of complexity which they can use to test against events.
That's how | view the problem of constructing curriculum in mathematics. Viewing it that

way gets us into these other areas of knowledge and human endeavor.
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Issues Surrounding Algebra

Elizabeth Phillips
Michigan State University

1 come to this conference as chair of the NCTM Task Force cn Algebra; but | wear
many other hats concerning algebra. One of my responsibitities.at Michigan State
University is to upervise and coordinate the teaching of the Intermediate Algebra course.
This fall (1993) we have 64 sections [ ~ 35 students eacH) of Intermediate Algebra; these
students come to us with 3 and 4 years of high schocl mathematics. A greater part of my
responsibilities are in the area of mathematics education, and many of my efforts in this
area are related tc the issue of why studenis are entering the university with 3 and 4 years
of mathematics and yet have to start all over. Over the years this has led me to search for
answers to the following questions:

® What is Algebra?

® \What are the important ideas and processes in algebra?

® \What does it mean to understand these ideas and processes?

® How do we teach for understanding?

® How do we assess these understandings?

® How dc¢ we implement change into the mathematics classroom?

These questions have played an important part of mathematics and mathematics
education courses that | teach for preservice teachers and have played an important rcle in
shaping several professional development projects: the Algebra Workshop (codirected with
Glenda Lappan, 1986-88) was a 2-year project designed to develop a cadre of leaders to
help implement a vision of algebra that was based on conceptual understandings; the
Making Mathematics Accessible to All (directed by Chris Hirsch, 1990-present) is designed
to help teams of teachers, counselors, and administrators from Michigan high schools
implement a core curriculum in mathematics. Finally, 1 have been involved in several
middle school projects: currently the Connected Mathematics Project, which is an NSF-
funded project to develop a complete mathematics curriculum for the middle grades of

which algebra is an important strand.
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| continue to seek answers to the above gquestions as | wrestie with how to teach
algebra to college students who come with many misconceptions and little understanding,
how to educate teachers (both preservice and inservice); and how to develop a curriculum
that provides a solid foundation for algebra, for middle school students and teachers.

Defining Algebra

Except for a brief sojourn into developing mathematics as a structure during the
"New Math™ era, algebra has traditioné!ly been a symbol manipulation course designed to
give students the manipulative tools necessary for the eventual study of caicufus. This
view of algebra and of math in general has not been sufficient and is one of the issues that
provided the impetus for the NCTM Standards for Curriculum and Evaluation., However, as
the NCTM Standards are being implemented, the issue of algebra quickly emerges: What
is algebra? Why is it necessary? low shouid it be taught? assessed? Instead of presenting
a vision or broad definition of algebra, the Standards describe algebraic processes that
students should have mastered upnn completion of a core curnculum. But the broad,
general goals of the Standards need elaboration in order to be operationalized by a teacher
in the classroom. Such a definition or vision of algebra will be difficult to create because
curriculum léaders, mathematics educators, mathematicians and mathematics teachers

(kindergarten through college} view algebra differently. Various definitions of algebra

- lude:
L A course with some "mythical” body of knowledge;
. A part of mathematics;
L A generalized arithmetic;
L A symbolic language;
° A language that uses verbal, tabular, graphical, and symbolic forms;
e A study of relationships, patterns, and functions;
] A series of problem-solving strategies;
L A modeling process;
* A way of reasoning; and
] A formal structure.
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Redefining Algebra

We need to define a vision of algebra that will serve a wide population and yet be
specific enough to allow teachers to interpret the curriculum and make decisions. In
developing this vision, some of the issues to be addressed include: How does technology
affect the vision of algebra? What is the role of symbols andfor symbolic thinking in a
technology-intensive society?

Symbol Manipulation

The issue of how much symbol manipulation students need is central to the debate
about algebra. Many teachers claim that very little work with symbolic manipulation 1s
needed; others, including many university mathematicians, are feafful that students will not
have the necessary symholic reasoning skills needed to progress in mathematics and
science.

The Standards suggest topics that should receive decreased and increased attention
(by teachers). On the list of decreased attention is "the use of factoring to solve equations

3

and to simpiify rational expressions.” Many people will not argue with this statement;
graphing cal' ulators or computers are readily available for solving equations and for finding
the factors o7 1 expression, if needed. Yet for many teac.hers this statement is still quite
vague is it proposing that factoring not be taught? Students need to model problems
using uigebraic expressions and to show that different expressions for the same problem
are equivalent statements. Students may also need to transform equations into a form that
can be entered on a computer or graphing calculator. The distributive property plays an
important role in being able to express problems algebraically, to show that two
expressions are equivalent and to express an equation in a form suitable for the computer.
Factoring is part of the distributive property. .
Students who are college-intending need to be able to express statements in
equivalent farms. Reasoning ' 'ith equivalent symbolic forms can very often reveal
information that is not apparent in graphs or tables. The Standards suggests that we
decrease the time spent in symbolic manipulations and increase the time spent on symbalic
reasoning. The role of symbols and what we have come to know as symbol manipulations
needs careful discussion. How much symbolic transformations or manipulations are needed

to reason effectively with symbols? Consider the following example:
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Example 1.

Problem: The cube pattern below is made from unit cubes. If the pattern continues, how
many cubes will it take to build the next two buildings? How many cubes will it take to
build the Nth building?

Figure 1

Solution: A class of preservice elementary teachers were given this cube pattern and

asked to explain the reasoning they used to generalize the problem. The following is a

sample of how students thought about the probiem:

Students’ Generalizations

1 1 6 18 40  75.. N2 (N + 1))/2
This student looked far patterns in the sequence of numbers which correspond to the
number of cubes in each building.

2) 1x1  2x3 3x6 4x10 5x15... N (IN(N + 1}]y/2
This student recognized that the number of cuhes of each building was a multiple of a
triangt:lar number {or the sum of the first N counting numbers).

3y 1 2(1 + 2) 31 + 2 + 3)... N1+ 2+ 344 +...+N)
This student recognized the number of cubes in the front face of each building was thé
sum of the counting numbers 1 to N and that there were N faces (layers).

4) (Tx1x2¥V2 {(2x2x342 [3x3x4, 2].. (NxNx(N+ 11}/2
This student built a rectangular prism with dimensions N, N, and N + 1. The volume
of the prism is N x N x N + 1, but this number is twice the number of biocks as in the

original building, so he divided by 2.
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5) (11(1) (1 +2¢2) (1 + 2 + 3)(3)... {1+ 2+ 3 +...+NJN)
The number of rows x the number of blocks in each row
Thi-s student focused on the number of rows in the Nth building which is {1 + 2
+...+N) and noticed that there are N cubes in each row.
8) 1°-0 2°-2 3%-9.. N¥ - {(NININ - 1)1}/2
This student built a cube of dimension N and then subtracted off the extra rectangular
prism.
7) Kelly's conjecture: N* + ((N- DN - 1) + 1/2 + (N-T)[(N-1) + 1](N- 1)/2
This student thought of the base as a square (rectangular prism with a square base and
a height of 1} and then the rest of the building as two more prisms.
Discussion: How much symbol manipulation is needed to model a problem? Which
symbol representation should we use? The first question is an open question, particularly if
the pattern one observes is more complex as in Kelly's conjecture. While all the
generalizations above are equivalent, several of them are quite different in form. The table
and graph of each are identical, but each symbolic form represents a slightly different
aspect of the cube pattern. So which representation one chooses depends on the
particular aspect of the pattern that one wishes to observe.

On a simpler note, the two expressions, 1 - 1/n and (n - 1}/n are equivalent
expressions, and they have the same table and graph. However, symbolically each
expression emphasizes a slightly different mathematical application.

When asking students to find the number of handshakes that wiltl occur between N
people, some students will argue that each of the N people will shake hands with N - 1
people, but that each. handshake is counting twice. Thus, the number of handshakes is
{(N(N - 1}}/2. Other students might observe that the first person will shake hands with N - 1
people, the second person will shake hands with N - 2 people, etc.—so that the total
number of handshakes is (N-1) + (N-2) +...+1. Thus, we have ((NIN-1)}/2 = (N- 1)
+ {N -2} +...+1—equivalent expressions, but each represents a different way of
thinking about the problem.

The question "How much symbol manipulation does a student need?" is tied to the
broader questions of "How can we develop symbol sense?" "What does it mean to have

symbol sense?"
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Representations in Patterns and Modeling

With the availability of small, hand-held computers, it is equally important that a
broader view of the role of representations in studying patterns and modeling be included
in a vision statement of algebra. The role of communicating ideas about patterns needs to
include not only symbols but also tables, graphs, and words. The advantages and power of
each need to be appreciated. Consider the following example:

Example 2.

The following problem is easy to translate into symbols. In fact, students can
probably do most of the problem with only arithmetic. For these reasons this problem (or
some other similar setting —walking, running and bicycling rates or the cost of renting
rollerblades) provides an appropriate first entry into developing the characteristics of a
linear situation. if we explore the problem by using tables, graphs, and an equation, we see
that each representation provides insights into the rate of change {slope) in slightly
different ways.

Problem: The We Try Harder (WTH) car rental agency charges $23 a day plus 20 cents
per mile (plan 1}. How much does it cost to drive the car for one day?

Solution: The cost depends on {or is a function of} the number of miles we drive.

Using a table: We can set up a table {figure 2) for the number of miles driven in one day

and the corresponding costs.

Miles Driven Cost WTH in
in one day dollars

0 23
100 43
200 63
300 83
400 103
b00 123

Figure 2

The table is easy to read. By observing patterns in the table we notice that as the
number of miles increases by 100, the costs increase by $20. This constant difference or

rate of change between the two variables is the main characteristic of a linear situation.
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Using a Graph: If we graph the set of data in the table, we obtain a straight line. The
graph is more complete than the table, It is easy 1o read either the cost or the number of
miles. The rate of change between the two variables or slope is seen in the steepness of

the line and in the difference between corresponding coordinates of two points.

cost

WTH

63 [
20
4 T slope =20/100 = 0.2
/ 100

100 200
Miles per day
Figure 3

Using an Algebraic Equation: The relationship between the cost and miles can be
expressed as an equation. If we let Cost{m) represent the cost to drive m miles in one day,
then

Costim} = 23 + 0.20m

The rate of change or slope shows up in the equation as the coefficient of the variable m.
The constant, 23, in the equation can be related back to the graph as the y-intercept or the
point (O miles, $23) and in the table as the fixed per day cost of $23.

Discussion. The slope is represented quite differently in each representation. Each
representation helps to shape an understanding of slope, y-intercept and the relationship
between the two variables. If we change the parameters of the problem and look for
patterns, we continue to develop an understanding of linearity. For example, if the WTH
Agency drops the fixed charge of $23 a day (plan 2), then entries in the cost column in the
table {figure 1) shift dewn by 23, But the rate or the slope stays the same. For every $20
we can drive 100 miles or $20 per every 100 miles or ($20)/{100 miles) = (20 cents}/mile.
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If we graph the data for this new plan, we obtain a line which is parallel to the
original line, but goes through the origin. This line has the same steepness or slope as the
line obtained for the data in the first plan. The two lines are parallel. Similarly, we can
change the cost per mile and observe the changes in the thres representations.

An important step in understanding linear functions is to be able to recognize the
linear relationship in a problem; the rate of change between the two variables is constant in
various representations. An equally important step in recognizing linear situations is to
study examples that are not linear. Comparing linear growth and exponential growth are
interasting situations to use for this purpose.

The power in doing mathematics comes in recognizing a familiar pattern. However,
in Example 2 it is easy to translate from the words directly to symbols., Students need the
opportunity to investigate situations that can not be directly translated from words into
symbols. As an example, consider the problem of investigating the surface arez of a stack
of Cuisenaire rods of the same color {figure 4).

Example 3

Stacked Unit
colored rods rod

Each rod is 4 units long, one unit high and one unit wide.
Figure 4
Discussion: Some of the symbolic representations that students have used are:
(2 +4n-1DIN +[4 + 2 (7- D4
18 + 12({n-1)
2l4in} + 1(n) + 4111 + 2(n- 1)
4[2n + 2] + 2(2n - 1)1}
12n + 6
The pattern is linear, but it is not observed from the statement of the problem. Students

either generate a table of values and recognize that it is linear or they observe
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some features of the patterns and translate it into algebra—similar to the processes used
by students for the cube pattern in Example 1.
Technology Manipulation

The availability of graphing calculators has caught the attention of mathematics
teachers in ways that no other piece of technology has done in the past 30 years. NCTM
has made three important statements concerning the impact of technolegy on the
mathematics curriculum:

@ Some mathematics becomes more important because technology requires it.

® Some mathematics becomes less important because technology replaces it.

® Some mathematics becomes possible because technology allows it.
We need to address these statements in more specific ways. What mathematics is more
impertant? What mathematics is less important? We also need examples of curriculum
that use technology in ways that provide deeper understandings of important concepts. It
is crucial that we address these issues soon. Some curricula are being implemented that
claim to use technology, but in fact the focus is on "how to use the graphing calculator.”
There is a danger that we could be replacing abstract symbol manipulation with equally
abstract algorithmic techniques on how to use the graphing calculator {or computer}.

The role of technology needs careful discussion; "What does it mean to have

graphical sense?" "How do we develop representational sense?”
Toward a Teaching Strategy

There is no area in which the study cof patterns is as fundamental as it is in
mathematics. Mathematicians observe patterns; they conjecture, test, discuss, verbalize,
and generalize these patterns. Through this process they discover the salient features of
the pattern, construct understandings of concepts and relationships, develop a language to
talk about the pattern, integrate, and discriminate between the pattern and other patterns.
When relationships between quantities (variables) in a pattern are studied, knowledge
about important mathematical relationships and functions emerges.

To help students learn the impertant concepts and processes of algebra, it is
important to start with problems that embody an important concept or strategy. As the
students seek answers to the problems they cbserve patterns and they reason and
communicate about these patterns to develop understandings. The Car Hental Problem

(Example 1) is an example of starting with a problem to introduce the idea of linearity.
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When students recognize this pattern in another situation, they very often will remark "this
is the Car Rental Problem!"
Problems embedy the concept or the process. Solving a problem leads te more than

an answer —it leads to knowledge and understanding.

Defining Algebra for All Students

Algebra has played the role of "gate keeper" for far too leng. The focus should be on
what all students *~ill know at the end of high schocl. A vision statement must stress the
knowledge of the basic concepts and processes of algebra that are essential for all
students.
® \What core of algebraic knowledge wili serve students graduating from high school
who will be going directly to the work force, or to some technical college or tc a
university, including liberal arts and science majors?

® \What teaching strategies are needed to ensure that all students have access to
this knowledge? How will students be assessed?

® Does the vision of algebra allow for the development of algebraic knowledge
throughout the K-12 curriculum?

The following working definition of algebra was developed by the NCTM Algebra Task

Force. We welcome your reactions.

Toward a Working Definition of Algebra

After a lengthy discussion, the NCTM Algebra Task Force committee agreed that
there is a need for a well-developed and clearly articulated national vision of algebra which
establishes the necessity of algebra for all studants, and an elaboration of that vision with
specific discussions of the important ideas, strategies, and processes it includes. The Task
Force recommends that NCTM sponsor a series of conferences to present a nationa! vision
of algebra and develop strategies for its implementation. The foilowing definition was
drafted by the NCTM Algebra Task Force:

A. The Vision: Algebra is a study of patternsfirelationships and functions which uses

a variety of representations including verbal, tabular, graphical, and symboiic.

B. These representations make it possible to:

® [Jse technological tools effectively;

¢ Communicate, analyze, and interpret infoermation;

78



a5
g

® Formulate and solve problems by collecting, organizing, and modeling data;

® Describe important patterns of behavior of families of functions: and

® Recognize, interpret, and use discrete and continuous relationships.

C. The vision statement must include the following non-negotiable principles:

® A national goal that every student will graduate from high school with the
algebraic skills and knowledge needed to function in our technological society.

® Algebra will become a K-12 strand.

® Teachers must use a variety of teaching and assessment strategies and tools
to teach and assess algebraic ideas/concepts.

This vision of algebra should be followed by an elaboration of the vision. For
example, the elaboration should demonstrate how problem-solving, reasoning, modeling,
and structure fit within the vision. The elaborations should also suggest what functions and
relationships are considered basic; why they are important; and what is important to know
about these relationships. The Task Force has suggested that linear and exponential
functions (growth) be part of the core curriculum and that quadratic and simple rational
functions be studied more informatlly. Any investigation of important features of functions

should emphasize rates of change, optimization, and important local and global behaviors.
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Addendum
Issues Surrounding the Topic of Algebra

The following issues were identified by the NCTM Algebra Task Force:

General

* Why is there such a large population of remedial algebra students at the college

level, students with 3 and 4 years of high school algebra?

»

Why is there such a large need for math remediation at the business level?

* Why are many states mandating algebra for all students —what algebra?

What is Algebra?
* What is algebra?

* What are the big ideas? concepts?

*

What is the core curriculum?

What mathematics (algebra) should students know and be able to do when they leave

high school?

*

College-intending

* Technical 2-year colleges

*

Industry and business

* Is algebra a course or & strand in the K - 12 curriculum?

* What is the role of technology, symbols?

* What is the role of concepts, strategies, and processes in mathematics {in algebral?
Assessing Algebraic Knowledge

* How do we assess students’ knowledge of algebra?

*  What do we do with the consistent low test scores?
Can every student do algebra?

* How do we overcome tracking—or is some tracking acceptable in the transition
period providing that students at all levels can truly cross tracks and are heid to the
same standards?

How can we help students to appreciate that mathematics requires work and

perseverance?
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Teaching Algebra

* How do we package algebra?
* How do we deliver aigebra?

* What are effective pedagogies?

* Are there different learning styles?

*  What are they and what instructional systems do we need to accommodate these
learning si/les and the needs of a diverse population?

How do we bring excitement to the teaching and learning of algebra?

* Who is teaching first year algebra?

How do we help teachers overcome the "comfort level” they have achieved in teaching
a "skill-and-drill™ curriculum,

How will we provide the extensive professional development that is needed to help
teachers adapt to a curriculum based on the NCTM Standards?

Educating the Public

* How do we educate the public —administrators, parent:s, politicians, businesses,
industry? ’

* What is happening in other countries—is this useful information?
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Is Thinking About "Algebra” a Misdirection?

Alan H. Schoenfeld
University of California at Berkeley

Many people, including | imagine a quorum of the people at this conference, believe
that much of the problem we face in mathematics instruction has been caused by focusing
on algebra as the narrow band of symboi-manipulation techniques that have traditionally
constituted ninth-grade mathematics courses. It can be argued that focusing on algebra
qua algebra is a misdirection, and that we should be thinking instead of the broad set of
symbolic understandings and uses of them that students should develop in their
experiences with mathematics. So, my main issue is: What should we be thinking about
within the convex hull of algebra-related mathematical stuff? My goat is to raise a few
basic questions related to that issue.

Rather than speaking in abstractions, let me give some concrete examples of
problems that | see as being appropriate and algebra-related for our students. Problem 1
comes from an experimental 6-week unit my research group built as an introduction to
(mostly linear) functions. Problem 2 is pretty standard, and the source of some controversy
related to an innovative high school mathematics curriculum. Problem 3 is one | use in my
undergraduate problem solving course, but there’s no reason it couldn’t be a mainstay at
ninth grade. I'll give a student’s solution to Problem 1, because you should see what
ordinary 9th graders can do. What one can do with Problems 2 and 3 is pretty obvious.
Problem 1.

This was a homework problem from the fifth week of our unit, so the students had
only a brief introduction to graphing prior to working it. They had worked with various real
world interpretations of linear and nearly linear functions, and had drawn graphs of various
real-world phenomena le.g., a distance-versus-time graph of a mechanical toy walking on a
more or less straight path).

The problem statement and a solution produced by a student whose grades were

more or less average to this unit follow:
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Write a story that could describe this graph.

*

Location

Time

"The Sea Hog (Militaries latest lard powered submarine) is prepared to go.
The Admiral who will navigate the vessel is explaining to the crew why lard is a
better fuel in terms of defense cuts. The Sea Hog sets off. By the time it is 12 miles
out to sea the Admiral realizes that he has carelessly left the weapons back at the
port. He sets back at the same speed he set out at, about 3 MPH {lard is not a very
good submarine fuel as far as speed is concerned.)

"The admiral had called ahead and asked for the weapons to be ready on
port by the time he returned to avoid delay. When he had reached port he didn’t
even need to stop or slow down. They just threw the weapons in,

*The sea hog sets out again at about 3 MPH, until again about 3 miles from
shore, Then it was to the Admiral’s surprise that this was not really his crew. His
was back at the dock. When the Admiral had returned the submarine didn't even
stop or slow down. The wrong crew jumped off and the right crew jumped on.

After 3 hours it was 12 miles out that it was discovered that there wasn't enough
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lard to make the trip. (I can’t tell you where the trip was. TOP SECRET you know.}
They head back and decided to try again tomorrow.”
Problem 2.

Consider the standard figures used to give a purely physical preof of the
Pythagcrean theorem, such as the gne that Brenowsky used for the "Ascent of Man." One
figure shows a square {B-A} on a side surrounded by four [A,B,C) right triangles (A < B <
C), in such a way that the arrangement gives a square of side C. The second is a
rearrangement of the same pieces, where the figure can now be seen toc comprise two
squares, one A on a side, and one B on a side. This is a "lphysical" proof that for this one
figure {and presumably all like it) |

A? + B? = C?, for which you need only know that the area of a square of side Sis

S2, and some subtraction.

There is also a lovely symbol-manipulative proof requiring the first figure only.
Produce it, and explain the conneaction.
Problem 3.

Take any three-digit number and write it down twice, to make a six-digit number.
(For example, the three-digit number 789 gives us the six-digit number 789,789.) I'll bet
you $1.00 that the six-digit number you‘ve just written down can be divided by 7, without
leaving a remainder.

OK, s0 | was lucky. Here's a chance to make your money back, and then some.
Take the quotient that resulted frem the division you just performed. {'ll bet you $5.00 that

quaotient can be divided by 11, without leaving a remainder.
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OK, OK, so | was very iucky. Now you can ciean up. I'll bet you $25.00 that the
quotient of the division by 11 can be divided by 13, without leaving a remainder?

Well, you can’t win‘em all. But you don’t have to pay me if you can explain why this
works.

Now, I’d argue that our kids should be able to do all of these {and manv more of
considerably more diversity), and that they should pick up the skills to do so somewhere in
the K-10 curriculum. The problems are all, for me, deeply connected to some of the
symbolic operations we cali alyebra, If our kids had the skills to do these—not as replicates
of things they’'d seen, but as problems they could think their way through—I'd argue that
+hey have some reasonable understanding, and that they’ve developed have some of the
analytical and representational tools that would serve them well later on. If that's the
case, how and where should they pick up such skills? How do we provide the instructional
contexts, and support structures {for teachers as well as students) to epable them to

develop such understandings?
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Thoughts Preceding the Algebra Colloquium

Zalman Usizkin
University of Chicago

Betty Phillips began her paper with a description of the rany hats she wears when
thinking of algebra. It may help people understand what is said here if | indicate not my
hats but experiences. First, | went to the University of Illinois as an undergraduate. There |
learned the UICSM approach to algebra, which was rather different than the approach 1 had
been taught in school, which was careful but skill-driven. | learned that being able to do
mathematics was not the same as understanding it; in UICSM, understanding meant to be
able to give reasons for what one was doing and to use precise language. Second, | taught
algebra in high schools in the sixties out of what was for two decades the canonical school
algebra: the Dolciani series. They were very well-written texts that embodied much of new
math. Third, when Art Coxford and | worked in the late sixties to develop a school
geometry course utilizing transformations, we saw immediate applications to school
algebra. As a direct result, in the early 1970s | wrote a second-year algebra text
|Advanced Algebra with Transformations and Applications) that utilized transtormations,
matrices, and groups throughout. Fourth, it was clear that this group-theoretic approach
was not the approach to take to first-year algebra. Following the beliefs of my colleague
'Max Bell, in the midseventies with the help of NSF funding, I developed a first-year algebra
course (Algebra Through Applications with Probahility and Statistics) in which applications
were used to develop the algebra. Understanding now took on a different meaning,
namely, the ability to apply mathematics to situations in the real world. Fifth, from 1979 to
1982, Max and | worked on materials for teachers on applyfng arithmetic [Applying
Arithmetic: A Handbook for Teachers), because we realized that a major reason for the
difficulty students had in applying algebra was that they could not apply arithmetic. There
is a chapter in that book on uses of variables because we realized that one cannot
adequately discuss arithmetic without variables. Sixth, | was just about to embark on
materials for students for the year before algebra {and geometry) when we learned of the

interest of the Amoco Foundatiop in funding a large-scale project to improve school
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mathematics in all the grades K-12. So began UCSMP, which has afforded me (and many
others) the opportunity to put together ideas learned from our earlier ventures. Algebra is
a force in all six of the UCSMP secondary (grades 7-12) texts, and the main subject matter
of two of them: Algebra and Advanced Algebra. For students who are at or above grade
level in mathematics, these are designed to be taken in 8th and 10th grade. {Judging from
teachers who attend our conferences, about half of UCSMP Algebra students in non-state
adoption states are 8th graders The percentage is much lower in state adoption states.]
We recommend that better-prepared students take these courses earlier; more poorly
prepared students take them later. And seventh, we are now working on the second
editions of UCSMP texts, which we hope are influenced by the latest in curriculum thought
and by the experiences of teachers and students in the thousands and thousands of

schools using our first editions.
Levels of Curriculum

Certain conceptions may be useful to us. One conception is the levels of curriculum

from SIMS {Second International Mathematics Study):

L B Ideal curriculum—as represented in documents like the Standards;
. Implemented curriculum—what is taught; and
L Achieved curriculum—what is learned.

We may wish to add to this:

L] Available curriculum—what is found in textbooks and other materials; and

° Tested curriculum—what is found on various evaluation instruments.
It is dangerous to use the worst of the implemented and achieved curricula in our country
to justify changing the ideal curriculum uniess we compare it with what we think rmight be
the worst of the implemented and achieved curricula under a new ideal curriculum.

Conceptions of Algebra

What is [are) our conception(s) of algebra? Betty Phillips has given 10 conceptions
in her paper, but then suggests a vision that | believe is far too encompassing. "Algebra”
in it could be replaced by "analysis" or even by "geometry!" | prefer to say that there are
many ways to describe patterns. | have difficulty calling all of these algebra: to me tables
are arithmetic; graphs are geometric; formulas are algebraic. 1 am reminded that many

students think of an ellipse only as an algebraic figure because they are introduced to it in
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a formal way by an equation, and they think symmetry requires that one have a coordinate
system. Thus, sometimes algebra demeans the visual world as the origin of many
concepts. Algebra is fundamental but it is not all of mathematics.

] think four of Betty's conceptions are major:

L] Algebra as generalized arithmetic;

L Algebra as a means to solve problems;

. Algebra as a study of relationships; and

L Algebra as the study of mathematical structures.

Underlying all these is algebra as a symbolic language that describes both real and

hypothetical patterns.
Algebra as a LL.anguage

My experiences have led me to a large number of beliefs about schoal algebra, too
many to list here. The most relevant, however, may come from the notion that algebra is a
written language dealing with the use of letters or other =ymbols {not words) to stand for

elements of sets. The following then follow because it is a tanguage:

. Algebra is best learned in context.

o Almost any human being can learn it.

® Familiarity is more easily acquired when one is younger than when one is
older.

Should We Worry Whether Algebra is a Course or Not?

Some may wish us to discuss the question whether algabra should be a course or
not. This to me is a red herring. Algebra is today found in all mathematics books above
grade 6 and in many elementary books as well, whether or not they have "algebra” in their
title. In many states it is state law that there be an algebra course (or two}, and ane will
change the curriculum faster by keeping that course and changing i. than by attempting to
remove the course. The question should be: What algebra do we wish students to learn?
Let the dozen NSF-sponsored projects, other curriculum developers, and state and local
educators work on the packaging.

Where Might We Begin?

It used to be that we thought of algebra as everything associated with variables

that stand for numbers or operations. In other settings, | have written about conceptions of
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algebra and related uses of variables. But 1 think to get into that level of detail at this
conference might lead us off track. VVariables are in geometry and every other branch of
mathematics. | think it would be better for us to begin with the traditional conception{s} of
algebra, to begin where most of our readers are at. And then, if we wish to change the
conception(s), we will at least have a point of departure. In this regard, | would say that
Betty has used the word mythical in the definition of algebra to which it least applies! In
my experience, the body of knowledge that has been traditionally called "algebra” is about
as well-defined as any body of knowledge we have in mathematics.

What Issues Might We Address?

Betty's enunciation of issues is most helpful. | would hope we also could address
some of the myths | mentioched in my earlier notes: (1) that algebra is only useful for future
scientists or engineers, so it needs not be taught to all; (2) that algebra is inherently
difficult, that it cannot be learned before 9th grade except by the gifted; and (3) that "true"
algebra is the manipulation of symbols. There is a fundamental down-te-earth question that
we should at least raise, if not try to come to consensus. What algebra should everyone
have an cpportunity to learn? If not everyone, then whao should have an opportunity to
learn: factaring of quadratic trinomials; manipulation of rational algebraic expressions;
complex numbers: matrices; vectors; manipulations with radical expressions. The starting

point for this could be the lists in the NCTM Standards.
Where Might We End?

Judging from the conceptual framework provided by Carole Lacampagne and
enunciated in the list of invited participants, our charge in Warking Group 1 overlaps with
that of Working Group 3. We might quickly try to come to saome boundary conditions that
would keep the groups from discussing the same things.

We also necessarily overlap with Working Group 4, and not just in the ways that
Carole has mentioned. The boundaries between algebra and calculus are fuzzy to anyone
who has graphing technology. Same of the new curriculum projects ask students in their
first-year course in algebra to answer questions that we did not consider until calculus.
Furthermare, the needs ¢f the caiculus curr‘iculum are a powerful force in determining what

is taught in school algebra. Without a change in the thinking of college-level
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mathematicians toward scheool algebra, it is unlikely that any changes in schoo! algebra will

be sustained.
What Experiences Can We Bring to Bear?

| assume that Betty’s last question was rhetorical —what happens in other countries
is very useful information. The Soviets introduce variables in the early elementary grades
with a great amount of success and, like the countries of the Far East, give a concentrated
algebra experience to all students beginning in grade 7. Let us realize that some countries
are ahead of us when it comes to teaching more mathematics to more students, and
capitalize on their experience.

One thing we might want to recognize is that, at least in Japan and Taiwan and
China, students are sorted by exams into schools at grade 7, and the algebra that is taught
in some schools in grades 7-12 is more advanced than the algebra taught in other schools
at the same grades, even though all schools follow the same national curriculum. That
happens als¢ in the United States, though with us it is unofficial. What goes for "honors”
algebra in some U.S. schools would be a typical course in others. When we speak of
"Algebra for All," would we really be content with the.same algebra for all?

Thoughts Following the Algebra Colloquium

There were really three levels and two types of algebra being discussed at this
conference. The two types of algebra were wonderfully explicated by Lynn Steen in his
final remarks. One type leads from functional thinking to functions to calculus to analysis.
The other type leads from patterns to manipulation (but this is really in both—Lynn should
have replaced it with "properties”} and then {through an intermediate step felt by Lynn to
be missing) to linear and abstract algebra. This intermediate step is the introduction of
transformations and matrices and vectors {for linear algebra) and properties and examples
of structures (for algebra). | am pleased that we <o both of these in the UCSMP
curriculum.

Jim Kaput’'s paper for Working Group 1, and Alba Thompson’'s remarks at the
colloquium stressed only the first type, that involved with functions. In fact, Alba distorted
the situation by showing a tranisparency purportedly summarizing the NCTM Standards

statements regarding algebra, nut in fact deleting all but the statements concerning
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functions. On the other hand. Victor Katz’s presentation emphasized only the second type
of algebra.

| myself believe that it is the second type of algebra with which we should have
been primarily concerned, and that the other is properly called analysis, but it is obvious
that there is overlap both in school mathematics and in mathematics itself. The three levels
were:

1. The introduction of algebraic ideas and algebra itself, roughly covering the
ideas that are now encompassed in first-year algebra but with many
thoughts for major change both in content and in delivery;

2, The honing of skills (can | say the word?-it was noticeably absent from the
discusstion} and the elaboration of mathematical relationships and
applications that is now covered in the later years of high school or in
remedial courses at the college level;

3. The linear algebra and abstract algebra that are taught as post-calculus
courses {usually) at the college level.

Of these three levels, { heard very little discussion concerning level (2), though this may
have occurred in Working Groups 3 and 4.

The significance of this gap is that, though we spoke of "algebra for all," we spoke
almost entirely of access to the ideas, not of success within them. There was much talk
about how, if we just changed our approaches, students would be better served, but there
was little talk about the next step, and that is, somehow identifying what students who
leave high school would be able to do with this "new algebra” that thev could not do
before, and the implications that would have for colleges. In particular, there was almost
no discussion about what these students might be able to do outside of the realm of
functions {i.e., in the second type of algebra | refsrred to above). For many, it will be
hotllow success if we have more students who pass through some sort of algebra filter if,
once they have passed through, there is no tangible increase in their understanding or

ability to do anything.
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Report of Working Group 2

Alphonse Buccino
University of Georgia

Vision of the Achievable

What is the meaning of "Algebra for All” and why should there be a colloguium
focused on algebra? For America and many other nations, the characteristic feature of
formal education in this century is the provision of increased access: over the last hundred
yeais, increasingly larger proportions of our population have spent more and more time in
schools and colleges. This is reflected in the expansion to near universal access to high
schocl education in the early part of the century, followed by a great increase in access to
higher education in mid-century. The phenomencn of increased access appears to have
leveled off over the last 25 years or so and, as an issue, has been réplaced by concern
over outcomes and resulis—specifically, how to help larger proportions of our citizens
attain more from access to education, how to bring them to higher levels of achievement in
knowledge and skill.

This shift in focus from access to outcomes is part of the contextual scene that ied
to tHe Algebra Initiative. The conceptual framework and the discussion at the conference
implicitly and explicitly underscore the focus on algebra as a barrier, a stumbling block, to
higher achievement. Thus, a major implicit focus of the colloquium is the idea of elevating
for all education professionals their vision of the achievable” and strengthening their
professional corr.nitment to Algebra for All.

Two major barriers are associated with these ideals: {a) the intrinsic difficulty of
teaching and learning mathematics; and (b) diversity and multicultural issues, barriers to
particular groups marked by race, gender, class, first language, or other societal categories.
Both these barriers are addressed by the NCTM Standards. However, the standards and
subsequent reports must be supplemented by guidance for identifying the nature of these

barriers and eliminating them from classroom settings.

*The user of this phrase here 1s suggested by observations of Phuhp W. Jacksanin Chapter |l ot Fundamental Research and
thr Pracess of Educatian, a report published by the National Academy of Sciences in 1877,



Redefining Algebra

It is in the foregoing context that across the state and nation the call for credibility
in school mathematics is focused on a thing called algebra—emphasized by the call of
algebra for every student. First, this is a response to the recognized need for increased
mathematicai reasoning and application by all members of society. No longer can the waork
force function with only a few individuals with mathematica! sophistication beyond
arithmetic! Second, it is the recognition of the inappropriate use of mathematics,
specifically algebra and calculus, as gate keepers in our society. Tracking in mathematics is
a major force in effectively exciuding individuals from many academic and vocational
pursuits. ‘

We must involve all of our constituencies--students, parents, leaders from
business, and educators at all levels—in addressing the challenge of algebra for all
students. The task will be a difficult, time-consuming one—for every one involved —but
we cannot ignore the need. The task will involve major changes of beliefs about what
algebra is, how one does algebra, and who can learn algebra. Technology has opened up
mathematics to individuals in just about every line of work. We must challenge the widely
held American belief that mathematical ability is hereditary.

School algebra evolved as performance of:symbolfc algebraic procedures, such as:
solve, simplify, factor—typically as isolated, symbolic manipulations. We must do
something different! The vision of algebra for all students must be clarified and
communicated openly within the education community and beyond. First, what is the
algebra deemed necessary for all students? Second, how do we change expectations about
what algebraic performance is: for teachers of algebra? for students? for parents? for post-
secondary gate keepers? for employers? for district administrators? Third, how do
teachers, schools, districts, and states monitor student performance in using this algebra?
In the fast changing world of mathematics, science and technology, there is no single
answer to these questions. Lynn Steen, director of the Mathematical Sciences Education
Board and former president of the Mathematical Association of Ameriza, states: "For most
students the current school approach to algebra is an unmitigated disaster. One out of
every four students never takes algebra....And half the students who do...leave the course

with a lifelong distaste ior mathematics.”
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Algebra as a Human Endeavor

Numerous groups and projects are making reccmmendations on algebra for all
students. Most call for the immersion of algebra siills in an applied and conceptuai
curriculum. They suggest the building of an algebra curriculum extended over many years,
frorn the primary grades on, where students search for and describe mathematical
patterns. In such a program, algebraic reasoning, descriptions. and symbols are used to
describe the world arcund us.

Many of the projects recommended the concept of function as the unifying theme.
Special attenticn is given to building tables of data and their graphs from observed patterns
and experimental data. Experimental data collection from the sciences, social studies, and
real world call for comparison between two traits or characteristics in contextual problems.
How does one trait vary as we change the other? This is a powerful meaning of the term,
variable, which is. rrowly used in traditional algebra symbol manipulation. This is the
algebra that is used by most adults in everyday life. The reading and interpreting of graphs
or tables of data that may show relations between factors. Major decisions are made on
the interpretations of these relations!

Even before symbol maniputations skills are learned, students should see and
discuss meaningful linear, quadratic, and exponential data. Such data exists in middle
science and social studies material. Well-chosen examples introduce students to a major
reason for using algebra—modeling real world situations. Attention to this view reinforces
mathematical connections within mathematics to measurement, statistics, and geometry.
Additionally, there are connections among algebraic representations —graphic, numeric
(often tables), and symbolic.

The Tonls of Algebra

We must publicize the set of tools that are meaningful in tha learning and doing of
algebra. Technology [graphing calculators and spreadsheets) and manipulatives (e.g.,
algebra tiles, integer chips, geoboards) are showing positive value in students who
approach algebra with a weak or uneven backgreund and low self-esteem in mathematics.
In the past, the use of technolegy has been delayed until students cuuld do symbolic
manipulations by hand —just as was once required with long division and messy fracticn

calculations. Now there are suveral algebra curricula which require, or strongly encourage,
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the use of graphing calculators on a regular basis. At today’s prices, a classroom set of 30
calculators is approximately $2,000, the price of one computer workstation.
Algebra for All in a Variety of Ways

As districts move to consensus on algebra for all students, the implementation plans
vary. In some cases, ail students will be in algebra by the ninth grade. In other districis, a
challenging middle grades mathematics program builds algebraic reasoning =7d multiple
algebraic representations of relztionships across the curriculum. Many schoels use state
guidelines which include algebra in an integrated program for traditionalls noncollege bound
students.

Changes in Postsecondary Mathematics

While often slow to change, college requirements and examinations are beginning to
change. New courses are being offered as alternatives to meeting competencies required
for graduation. These courses are quite varied, but many involve such topics as
management sciences (networks, scheduling, and linear programming), statistics (sampling,
surveys, statistical inference using confidence intervals), social decision mnking {weighted
voting systems, fair division and apportionment. game theory}) and exponential growth and
applications. Students who have been slow and poor in algebraic manipulation have been
seen to develop algebraic reasoning and representation for significant mathematical
settings they would have never seen in more traditional courses.

A change in view on what algebra i will require thorough, on-going discussions
about expectations with staff, schooi administrators, parents, ana community members.
First reactions often will be similar to those encountered when the inclusion of calculators
in the elementary grades was first introduced. VWe must be ready to carry on the dialog in-
depth and over time.

Educators at all levels of responsibility must be ready to respond to parents, the
public, and colleagues on expanding mathematical knowledge arithmetic for all students.
This is a challenge consistent with the NCTM Standards and the national concern for

improved mathematical power.
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Teacher Preparation Programs

We turn now from the foregoing view of redefining algebra to the following
observations and recommendations regarding the education of teachers, including K-8
teachers, to provide this new algebra experience for all K-12 grades. The critical elements
of teacher preparation programs are: admissions standards, teaching content, pedagogy,
and field experiences. Thus, teacher preparation programs must involve the active
collaboration of mathematics departments and departments of mathematics education. In
light of our observations regarding a vision of the achievable, another element we refer to
as affective development alse needs to be considered. Because admission standards to
teacher preparation programs play a significant role in determining who become teachers,
program improvement and reform should use more stringent admission standards from both
the academic and professional point of view, especially for programs for the preparation of
middie schcol and elementary schoc! teachers. We turn now to addressing the other
elements, adding discussions of faculty enhancement to facilitate implementation of our
recommendations. In another section, we link the field experiences element to a discussion
of the World of Practice where teachars practicing in schools are identified as co-equal
with college and university faculty in addressing reform of algebra. An addendum by cne
of the Working Group members is als¢ included which provides elabgration of several of
the ideas discussed.

Affective Development

The reform effort in aigebra teaching should include attenticn to affective
development. There shouid be the infusion of a multicultural background into the algebra
reform effert that includes:

L Studies both to synthesize existing knowledge and to create new knowledge
concerning the ways in which the teaching of mathematics encodes biases
which are often not recognized by teachers;

L Developing mathematics examples which can be included in multicultural
education courges required of prospective teachers;

. Providing specific information and guidance to teachers in mathematics

methods courses and professional development programs; and
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L] Developing a syllabus for a course on the multiculturat history of
mathen atics which should be required of all mathematics education
students.

Curriculum Content

Mode! teacher preparation curricula need to be developed in line with the ideas of a
strands approach for the teaching of algebra for all and in light of new technologies. These
curricula models should include pedagogy, content, epistemology, and experiences
appropriate for the education level to be taught. This will require reconceptualization of the
college curriculum for the preparation of K-b, 5-8, and 9-12 teachers.

Elerrientary and middle school teacher preparation programs should pay particular
attention to the mathematics of quantity and change where opportunities to lean algebra
occur. An emphasis ¢n representation, generality, and structure should permeate that
curriculum. The application of technology and the development of skills in the use of
symbolic manipulators and graphing utilities should be acquired by their uge in courses
throughout the program and should not be tagged on to be acquired in a separate course.
Pedagogy

First and foremost, those who offer teacher preparation programs should
themselves model good instruction. Moreover, the quality of instruction in these programs
must be examined and modified as necessary to:

° Incorparate a cognitive orientation {take account of what students learn and
what they make of our teaching); use on-line assessment; sensitivity to
students’ concept images;

L Maintain open lines of communication with students;

] Emphasize conceptual development of math ideas; reduce emphasis on
technique building; buiid on algebraic intuition; and

L Organize curriculum of courses in terms of cognitive objectives as opposed
to content objectives.

The work in pedagogy should be content-specific. There should be differentiation by
education level (e.g., K-8 versus early childhood and middle school). Moreover, there
should be a pairing of conitent and pedagogy work such as shadow seminars {(seminars on

teaching issues associated with specific content courses).
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Field Experience

The field experience component of a teacher preparation program is significant.
Accordingly, the selection of supervising teachers is critical. Overall, the guality of
practicum or field experiences for all prospective teachers is a problem in need of attention.
This is discussed further in the section below headed "The World of Practice.”

Faculty Enhancement

Development of new teacher preparation programs requires faculty enhancemert so
that faculty model exemplary teaching methodology associated with algebra {mathematics}
reform. Moreover, doctoral programs in mathematics and mathematics education should
incorporate nadagogy and epistemology of mathematics. There is a need to expand faculty
enhancement programs which give mathematics and mathematics education faculty
(preferably jointly) opporiunities to:

. Develop and experiment with a broad repertoire of teaching strategies to

enhance the conceptual understanding of their students;

° Become more knowledgeable about how students learn and how to assess

the learning of their students; |

. Explore curricular issues related to learning of algebra and preparing K-12

teachers to implement new curricula; and

L Develop and/or become familiar with exemplary curriculum materials which

enhance understanding of algebra.

The World of Practice

Effective teacher preparation programs must have robust and active relations with
the world of practice. Relationships with the world of practice in the schools should be
strengthened through the implementation of the concept of co-reform: reform of teacher
preparation programs jointly with the reform of practice in the schools. This will require the
establishmant of partnerships between teacher preparation programs and the schools.
Colleges and universities should review and strengthen their invitational/outreach efforts, in
the'light of co-reform, to establish and maintain lines of communication among
mathematicians, practicing teachers, and mathematics educators and work to create a
climate that is more teacher friendly. For example, colleges and universities can be more

accommodating in their scheduling of courses to meet the needs of practicing teachers.
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These invitational/outreach efforts should involve a more cognitive stance in teaching while
developing greater sensitivity to issues of cultural diversity with a multicultural
perspective.

Moreover, an algebra reform movement requires change in current practices of
teaching algebra in schools. The school ar school district is the locus of such change and
the success of such a movement is dependent on changing the practices of current
teachers, since obviously the time line of change must be shorter than the attrition of
practitioners. In fact, if practices of current teachers are not changed, even newly
graduated teachers who have been prepared for implementing new methods will find it
difficult to do so in an environment that does not support new ideas. Few first- and
second-year teachers are leaders among the faculty of their school; rather, they look to the
experienced teachers for guidance and, indeed, survival. If that experienced faculty does
not participate in the reform movement, then most new teachers will gradually adopt the
ideas of their senior colieagues who convince them older methods are "what works.”
Crucial Cor{cepts for Teachers of Pre-college Algebra

An understanding, concept definition, and concept image of the dimension of vector
spaces, for example, is probably crucial for teachers of third and fourth-year high school
mathematics courses. It is useful for any teacher of high school-level algebra. It is,
however, beyond any feasible goal as a necessity {or even ideal) for every eiementary and
middle school teacher who is responsible for the mathematics education of students. The
vast majority of teachers who influence the algebra-readiness and hence the algebra
success of pre-college students are not teaching higher level high school mathematics
courses; and for the near future, they are not the products of reformed presnrves university
teacher education departments. The majority are elementary and middle-school teachers
who completed their degree programs in traditional programs. While they do not need

in-depth understanding of linear algebra, they do need such things as:

. A working knowledge of using technology in instruction;

. Conceptualization of relationships among quantities;

] A commitment to development of algebraic thinking for all students;
. An understanding of the role of algebra as a gateway to academic

devzlopment and full participation in citizenship- and

L Access to real-world examples of the uses of algebra.
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What must these teachers do? What must they learn? How can they learn to
prepare young pecple for success in algebra? The answer lies in both curriculum and
professional growth—concepts that are interdependent. While curriculum is not the topic of
this paper, the approach to professional growth will make the assumption that a new
curriculum for pre-college algebra will treat it not as a ninth-grade course (taken also by
advanced eighth graders and precocicus seventh graders}, but as the study and utilization
of quantitative relationships, appropriate for all, from pre-school through a lifetime. This is
consistent with the National Council of Teachers of Mathematics (NCTM) curriculum
standards.

" Many currently practicing elementary and middle school teachers and many
secondary mathematics teachers are not prepared to implement this approach to algebra,
nor are they receptive tc top-down mandated change. Therefore, the key to change is that
practicing teachers must take responsibility for their own professional growth. They will
also need assistance from many sources—professional organizations, university teacher
education departments, univercity mathematics departments, their own scheol
administrators, their state departments of education, and their peers. Indeed they do need
such assistance. The critical attribute is that the practicing teachers determine and seek
fulfilment of their own needs. These external scurces must facilitate, rather than centrol.
Next Steps

Model programs should be identified and daveloped in which practicing teachers
take the initiative in identifying and satisfying their needs for professional development in

teaching and encouraging algebraic thinking K-10. These should be characterized by:

L A team approacﬁ 10 the identification of needs;
. Support of the school-district administraters;
e A variety of possible scurces of the professicnal development, including

universities, professional crganizaticns, schegl-district instructional
administrative staff, and other nracticing teachers; and
L] Mutual respect and parity among all the players—the practicing teachers,
providers of instruction, school administrators.
In closing, we observe that there is a crisis in content in the elementary schoal.
Current ideas about knowledge and teaching at the early grade levels have acquired

increasing sophistication in virtually every field, but especially for mathematics and
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science. This crisis in content makes it increasingly difficult for any one person 1o teach all
subjects, as is still the expectation in most elementary schools. What is needed are new
models of schoo!l structure and organization to experiment with new approaches to content
specialization’ or differential roles for teachers in the lower grades. Serious efforts along
these lines will require changes in such policy areas as the regulation of education and

teaching: certification, licensure, prefessional standards, and accreditation.

Addendum on Teacher Education

by Guershon Harel, Purdue University {in print): On teacher education programs in
mathematics, /nternational Journal for Mathematics Education in Science and Technology.

Current teacher education programs suffer from a lack of attention to the three

crucial components of teachers’ knowledge: mathematics content, epistemology,

and pedagogy. As a result, they cannot achieve the desired guality in teachers as
was envisioned by the current mathematics education leadership. Teachers’
mathematics knowledge is far frora being satisfactory even in terms of the
standards for high-school mathematics. The work on epistemology and pedagoegy is
detached from a personal experiential basis of teaching, and thus it is in conflict
with the well established principle that knowledge construction {and this includes
mathematics knowledge as well as knuwledge of mathematics epistemoelogy and
pedagogy) is a product of personal, experiential probiem solving activity. The effort
of teacher education programs must center on these three components of teachers’
knowledge base. In particu'ar, teachers’ knowledge of mathematics should be
promoted and evaluated in terms of mathematics values, not specific skills,
concepts, and symbol manipulations.

Mathematics content, which refers to the breadth and, more importantly, the depth
of the mathematics 'nowledge possessed by the teachers, is a crucial component because
it "affects both what [the teachers] teach and how they teach it" (NCTM 1981, p. 132).
Meoreover, a solid mathematics background js indispensable "to understand the
complexities of the mathematics embodied in the [S&E] Standards, complexities that may
have an effect on their implementaticns” {RAC 1988, p. 294).

Knowledge of epistemology includes the teachers” understanding of how students
learn mathematics. Teachers must understand fundamental psychological principles of

learning: that students construct their own meaning as a result of a disequilibration while
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they encounter new knowledge, that the source of any knowledge construction is an
experiential preblem solving activity (e.g., Balacheff 1990; Harel 1985; Piaget 1983; and
Thompsen 1985) and that mathematics is a social construct students establish through a
negetiation process (Brousseau 1988).

Knowledge of pedagogy refers to teachers’ ability to implement these psychological
principles: that is, their skills tc teach in accordance with the nature of mathematics
learning. Mathematics teachers should be able to make their classes a place of
"collaborative practice involving social construction of knowledge and socially distributed
problem solving, ... [a placel where students, working ccllaboratively and under the
tutelage of their mathematics teacher, engage in substantive mathematical activity” (RAC
1988, p. 342).

While these general characterizations are, | believe, in line with the theoretical
perspective taken by the Standards, they are in sharp contrast to the current state of
learning and teaching (see, for example, NAEP 1986). This contrast peoints to a major effort
that is needed tc help teacher educators "interpret the Standards and take steps toward
implementation” {RAC 1988, p. 340C). In particular, it points to a need for a collaborative
effort in developing adequate teacher education programs which will prepare our next
generation of mathematics teachers in the spirit of the Standards. The development of
such programs is not an easy task and invelves financial, organizational, pelitical, and
curricular problems. | will focus on three of these problems: learning how to teach via
learning how to learn, learning how to teach via teaching how te learn, and teaching only if
knowing what tc teach.

Learning How to Teach via Learning How to Learn

Currently, teacher education programs include content courses taught by
mathematicians and "methcds” courses {usually only one) taught by mathematics
educators. The responsibility in the education of teachers for the learning and teaching of
mathematics is placed in the methods courses only. The problem with this pattern of
teacher preparation is that teachers’ beliefs of what mathematics is and, in particular, how
it should be taught are tacitly formed by the way they are taught mathematics in their
precollege and college mathematics education. Unfortunately, as the recent report of a joint
task force of the Mathematical Association of America and the Association of American

Colleges, MAA-AAC (1990}, put it, "most college students don’t know how to learn
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mathcmatics, and most collage faculty don't know how students do learn mathematics. It
is a tribute to the efforts of individual students and teachers that any learning takes piace
at all" {p. 8). "The way mathematics is taught at most colleges--by lectures—has changed
little over the past 300 years, despite mounting evidence that the lectuie-recitation method
works well only for a relatively smail proportion of students” (NRC 1991, p. 17). Thus,
mathematics teacher education as currently practiced is inappropriate to carry out the
mission of teacher preparation. It is not possible for prospective teachers to change their
bzliefs and conceptions about mathematics they have formed during a long period of time
in one methods course. The goal of revitalizing the mathematics instruction in schools will
be achieved only if the ways preservice teachers are taught mathematics were compatible
with the principies of learning underlying the recommendations of the Standards.
Learning How to Teach via Teaching How to Learn

The second problem also arises from the way teacher education programs are
currently conducted. In these programs, prospective teachers have very little contact with
students, and the contact they do have—what’s called student-teaching experience—is not
integrated in, and it is remote from, their study of the teacning and learning of
mathematics. Moreover, these methods courses are separated from prospective teachers’
own experience of learning mathematics. In other words, prespective teachers learn about
mathematics epistemology and mathematics instruction, in isolation from an experiential
basis of teaching—thus in only a hypothetical context of students’ learning—and without
reflection on their own learning. Personal experience and self-reflection are, | believe,
indispensable for understanding and appreciating the problems that are inherent in learning
and teaching situations. The current teacher education programs are, therefore, in direct
conflict with the epistemological principle that knowledge construction is a product of
personal, experiential problem solving activity, because this principle applies to the
problems that mathematics teaching and learning present as well as to learning
mathematics. Without resolving the conflict, the methods course as they are offered today
contain elements of preaching, not just teaching.
Teaching Only if Knowing What to Teach

The third probleni concerns teachers’ knowledge of mathematics. The Professional
Standards (INCTM 1991), and a recent document of recommendations for the mathematical

preparation of teachers of mathematics by the Mathematical Association of America, MAA
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(1991), address this component of teachers: knowledge. To mathematics educators who
do believe that mathematics teachers need to have a strong mathematics background, the
picture drawn from the current research on teachers’ knowledge of mathematics is very
depressing. Extensive surveys of the state of mathematics teaching and learning is readily
available, and there seems to be little point in repeating it here (see, for example, Romberg
and Carpenter 1986; Suydam and Osborne 1977). Rather, | will discuss some findings
frem my own research with teachers, which indicates that teachers” mathematics
knowledge is below even the level expressed in the recommendations of the S&E
Standards (NCTM 1989), for high-schoo! students. For example, the recommendations
concerning the idea of mathematical proof in high school state that:

In grades 9-12, the mathematics curriculum should include principles of inductive

and deductive reascning so that ALL students can: make and test conjectures,

foermulate counter examples; follow logical arguments; judge the validity of
arguments; construct simple valid arguments, and so that, in addition, college-
intending students can: construct formal proofs for mathematical assertions,

including indirect proofs and proofs by mathematical induction {p. 143).

The results presented below show that what prospective teachers acquire from their
mathematics classes in high school and college is nc more than a distorted notion of
mathematical proof. Some of the research questicns posed were (see the twou publications
of Martin and Harel 1989)}: Do prospective teachers understand that inductive arguments
are not prcofs for mathematical statements? Are they able tc judge the validity of
mathematical arguments? To what extent are they influenced by the ritualistic aspect of
proof? It was found that:

Many students accepted inductive arguments as proof of mathematical

statements...and that acceptance of inductive and deductive arguments as

mathematical proof was not fecund to be mutually exclusive..Many students who
correctly accepted a general-proof verification did not reject a false-procf
verification; they were influenced by the appearance of the argument—the ritualistic
aspects of the proof —rather than the correctness of the argument..Such students
appear to rely on a syntactic-level... in which a verification of a statement is
evaluated according to ritualistic, surface features. Alternatively, relatively few

students have a conceptual-level deductive scheme in which a judgment is made
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according to causality and purpose of the argument {Martin and Harel 1989, pp. 48-

49),

These results are consistent with the conclusion made in Even (1885) that "we can
no longer assume that our preservice secondary mathematics teachers have an adequate
grasp of the mathematics that they will be expected to teach” (cited in Norman 1892).

The state of the elementary mathematics teacher is no better. For example, work
with preservice elementary school teachers {Graeber, Terosh, and Glover 1989; Mangan
1986) and 4-6 grade teachers {Harel, Behr, Post, and Lesh, in press) in the domain of
multiplication and division shows that these teachers possess the very same
misconceptions that have been identified with children. Like children’s knowledge,
preservice and inservice teachers’ knowledge includes beliefs that are incongruent with the
multiplicative operation of rational numbers. These beliefs thus block their attempts to
solve many multiplicative problems correctly. Examples of such misconceptions include
"multiplication makes bigger" and "division makes smaller” (Bell, Fishbein, and Greer 1984;

Bell, Swan, and Taylor 1381; Fishbern, Deri, Nello, and Marino 1985; Vergnaud 1883).
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Educating Teachers to Provide Appropriate
Algebra Experiences:
Practicing Elementary and Secondary Teachers —
Part of the Problem or Part of the Solution?

Clare Gifford-Banwart
Eisenhower State Mathematics & Science Program
U.S. Department of Education

Change in Methodology Needed

An algebra reform movement requires change in current practices of teaching

algebra in pre-college schooling. Among the needs are the following:

. Integration of algebraic thinking skills throughout the K-12 mathematics
curriculum;
L Transition from students as objects of instruction to participants in learning;

transition of teachers from dispensers of knowledge to facilitators of

learning;
L Transition from algebra for the elite to algebra for all;
L Transition from focus on algorithms to focus on conceptualization and

problem solving; and

° Utilization of technology.
School as the Locus of Change

The school or school district is the locus of such change and the success of such a
movement is dependent on changing the practices of current teachers, since obviously the
timeline of change must be shorter than the attrition of practitioners. In fact, if practices of
current teachers are not changed, even newly graduated teachers who have been prepared
for implementing new methods will find it difficult to do so in an environment that does not
support new ideas. Few first- and second-year teachers are leaders among the faculty of
their sctiool; rather, they look to the experienced teachers for guidance and, indeed,
surviral. If that experienced faculty does not participate in the reform movement, then
most new teachers will gradually adopt the ideas of their senior colleagues who convince

them older methods are "what works.”
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Crucial Concepts for Teachers of Pre-college Algebra

It is not surprising that university faculty who teach mathermatics courses such as
abstract algebra and linear algebra see the rudiments of these courses as essential for any
algebra teacher. Indeed, an understanding, concept definition, and concept image of the
dimension of vector spaces (for example} is probably crucial for teachers of third- and
fourth-year high school mathematics courses. It is useful for any teacher of high-school
level algebra. It is, however, beyond any feasible goal as a necessity {or even ideal) for
every elementary and middle school teacher who is responsible for the mathematics
education of students.

The vast majority of teachers who influence the algebra readiness and hence the
algebra success of pre-college students are not teaching higher level high school
mathematics courses; and for the near future, they are not the products of reformed pre-
service university teacher education departments. The majority are elementary and middle-
school teachers who completed their degree programs in traditional programs and may
likely not have a major in mathematics. While they do not need in-depth understanding of

linear algebra, they do need such things as:

L Numeracy—comfort and confidence in handling numerical data;

L] A belief in the value of mathematics;

. Conceptualization of refationships among quantities;

L A working knowledge of using technology in instruction;

® A commitment to the development of algebraic thinking for all students;
. An understanding of the role of algebra as a gateway to academic

development and full participation in citizenship; and

. Access to real-world examples of the uses of algebra.

What must these teachers do? How can they prepare young people for success in
algebra? How can they change the filter to a pump?

The answer lies in both curriculum and professional growth —concepts that are
interdependent. While curriculum is not a topic of this paper, the approach to professional
growth will make the assumption that a new curriculum for pre-college algebra will treat it
not as a nirth-grade course {taken also by advanced eighth graders and precocious seventh
graders!, but as the study and utilization of quantitative relationships, appropriate for all,

from pre-school through a lifetime. This is consistent with the National Council of Teachers
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of Mathematics curriculum standards as set forth in Curriculurn and Evaluation Standards
for School Mathematics.

Mast currently practicing elementary and middle schoo! teachers and many
secondary mathematics teachers are not prepared to implement this approach to algebra,
nor are they receptive to top-down mandated changes. But they are dedicated, capable,
creative professionals who, given the proper apportunity, can and will learn and make
changes that they believe benefit their students.

Therefore, the key to change is that practicing teachers must take responsibility for
their own professicnal growth. That does not mean that they do not need assistance from
many sources—prcfessional crganizations, university teacher education departments,
university mathematics departments, their own schocl administrators, their state
departments of education, and their peers. Indeed they do need such assistance. The
critical attribute is that the practicing teachers determine and seek fulfillment of their own
needs, These external sources must facilitate, rather than contral.

A maijor question at this time is how are teachers stimulated to do this? What
motivates a school-based movement of change and improvement? What outside forces
can plant the seed and what kind cof seed will grow? How can agencies/organizations
provide awareness without a top-down approach? What barrier_s do schoois and school
districts face? What suppeort is needed? How is funding appropriately provided? Those are
topics for further exploration.

Next Steps

Model pregrams should be identified and/or developed in which practicing teachers
take the initiative in identifying and satisfying their needs for professional development in

teaching and encouraging algebraic thinking, K-10. These should be characterized by:

L A team approach tc needs identification

. Support of sc ool district administrators

L A variety of sources of professional development
- Uriversities

- Professional organizations
- Scheol district administrators/staff
- Other practicing teachers

- Independent consultants
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L ] A variety of forms of \earning

University pedagogy courses

University mathematics courses

Staff development workshops and institutes

Professional conferences

Technology-based

Job-embedded learning (peer observation, study/discussion groups,
reading, ournal writing, self-analysis of teaching action research

projects)

L Mutual respect and parity among ajl the players

Practicing teachers

Schooi administrators

University faculty

QOther providers of instruction {math supervisors, private consuitants

and others)

When elementary and secondary teachers take the responsibility for their own

continuing professional development and when the system allows them the resources to

carry out that responsibility, then the changes in teaching methodology required for an

algebra reform movement can become a reality.
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Educating Teachers for Algebra

Alphonse Buccino
University of Georgia

The Challenge: Algebra for All

What is the meaning of "Algebr‘a for All," and why should there be a colloquium
focused on algebra? For America and rriany other nations, the characteristic feature of
formal education in this century is the provision of incre.ised access: over the last hundred
years, increasingly larger proportions of our population have spent more and more time in
schools and celleges. This is reflected in the expansion to near universal access to high
school education in the early part of the century, followed by a great increase in access to
higher education in mid-century. The phenomenon of increased access appears to have
leveled off over the last 25 years or s0 and, as an issue, has been replaced by concern
over outcomes and results —specifically, how to help larger proporticns of our citizens
attain more from access to education, how to bring them to highel levels of achievement in
knowledge and skill.

This shift in focus from access to outcomes is part of the contextual scene that led
to the Algebra Initiative. The conceptual framework provided prior to the conference )
implicitly and explicitly underscores the focus on algebra as a barrier, a stumbling block, to
higher achievement. It is a relatively nevr idea that algebra is necessary for everyone for
economic competitiveness and quality of life. While algebra has always been a staple of
the college preparatory curriculum, ** is only recently that new programs such &s "tech
prep,” designed for those not bound for the university, have a strong mathematics
component recognizing the need for more powerful mathematics preparation for the job
market.

Two major barriers are associated with attempts to establish algebra and success in
learning algebra as basic components of the general education of all students: (a) the
intrinsic difficulty of teaching and learning algebra; and (b} diversity and multicultural
issues, barriers to particular groups marked by race, gender, class, first language, or other

societal categories. Because algebra has functioned as a critical filter separating many
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students from further study of mathematics, any reform of the teaching of algebra must

address these barriers.
The Paradox of Teaching

There are several models that have recently been developed regarding the education
of teachers. One published by the Mathematical Association of America {Committee on the
Mathematical Education of Teachers of Mathematics, 1991} is cited in the paper providing
the conceptual framework for this colloquium. All the models are based on or derive a set
of core propositions for what teachers should know or be able to do {National Board for
Professional Teaching Standards, 1989). All inciude a core pronosition like the NBPTS
Proposition 1: Teachers Are Committed to Students and Their Learning.

Despite what appears to be a consensus regarding the ideal of algebra for all
students, there is by no means a universal commitment to the ideal on the part of
mathematicians and mathematics educators at any level, from elementary grades through
college. This is based on doubts about whether the ideal is realistic and feasible. In fact,
the ideal has not been accepted by many algebra teachers in the schools who retain the
conviction that some students just ¢cannot learn algebra because they cannot deal with
abstraction.

Some of this doubt, in turn, appears to arise from skepticism about even the,
possibility of teaching. Westheimer {1987) has asserted that scientists do not really like to
teach the "unwashed." Certainly, he meant his observations to apply to mathematicians,
as well. On the basis of personal experience, | am beceming more and more completely
persuaded that many of my university colleagues, especially in science and mathematics,
do not believe in teaching. Conversations | have had over the years reveal that while they
may believe in such a thing as learning, they do not believe they can do much as teachers
to help people learn science or mathematics.

This phenomenon is reminiscent of the Meno, where Socrates asserts the
impossibility of teaching. This, of course, is based on Socrates' idea on the nature of
knowledge, also expressed in the Meno: knowledge is innate and instilled in the human
soul at birth. The paradox about teaching is that Socrates goes on to demonstrate his
revolutionary new approach to teaching as a way of bringing this innate knowledge forth in
the student (see Gardener 1985). Freud also asserted the impossibility of teaching,

while—like Socrates —he introduced a radically new contribution to the art of pedagogy
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{Felman 1987}. This paradox, of instituting a revolutionary pedagogy while asserting the
impossibility of teaching, is relevant today. What model of teaching do our mathematicians
associate with failure? What model of teaching allows our best students to flourish? What
policies can be adopted to mediate this paradox?

One consequence of the absence of commitment to the possibility of teaching is the
reinforcement of the elitist perspective | mentioned earlier. Thus, the educational process
does not provide instruction, but functions as a sorting machine, separating the talented
from the untalented. The very title of a recent report on the problems of calculus teaching
and learning (Steen 1988} underscores this phenomenon.

At the elementary school level, two related characteristics stapd out: the
significance of innate ability relative to effort, and the American tendency for categorizing
students (Stevenson and Stigler 1992). For Americans, learning mathematics and science
is frequently seen as a process of rapid insight rather than lengthy struggle. Sort of the
light bulb going off in the head of the cartoon character to signify "aha." As a
consequence of this view, American children are prone to give up too soon in problem
solving. They often give up befure reaching genuine understanding. In Japan, this belief is
not shared, The Japanese believe that success in prablem solving and understanding
indeed involve lengthy struggle. Those who make the effort in this struggle are rewarded
with success.

The other characteristic, the pervasive American tendency to categorize students, is
reflected in the veritable explosion in special education classes and the growth of
categories of learning disability. Individual students are labeled as having good innate
ability for mathematics or science, or not so good innate ability, and they are classified
accordingly. Even when there is not formal tracking, the practice in American schools and
classrooms is to use ability groupings. In Japan, at least in the elementary school, there is
much less categorizing. All, or almost all, children are expected to learn what the
curriculum requires and they exert effort until they do.

If we are seriously to address the improvement of teaching, we must first resolve
our ambivalence about its very possibility. Moreover, we must develop a genuine
commitment to the ideal of algebra for all students. The resolution and commitment
demand that we took not only at teaching and learning but also at curriculum—what we

propose to teach and what we expect to be learned.
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Responses to the Challenge and Paradox
Mimetic and Transformative Teaching Traditions

This section presents two ideas suggesting responses that might be devised for
responding to the aforementioned challenge of abstraction and paradox of teaching. The
first idea is provided in an analysis by Philip W. Jackson {1986]}. in a monograph, Jackson
distinguishes between two traditions in teaching and learning one that he calls the
mimetic, which sees education’s purpose in terms of the transmission of factual
knowledge; and the other that he calls the transformative, which sees it in terms of
changes in the learner in areas such as character, morals, attitudes, or interests.

In considering the issue of whether teachers can have an enduring effect on their
students, Jackson reports on a survey that produced many reports from individuals who
remembered most vividly those teachers who succeeded in "transforming," profoundly and
enduringly, at least some of the students in their charge.

The mimetic and the transformative are not necessarily mutually exclusive nor exact
opposites. Both may be intertwined in a given teaching situation. Nevertheless, the
dichotomy is significant and highly valuable in thinking about the problem of teaching
algebra. This is so because algebra is seen widely in terms of the transmission of formulas
and facts —a mimetic effort. Yet algebra can play a critical role in the transformative
development of students; it helps to shape their self-image and even their world view.
Fortunately, many mathematicians claim to have distinctly transformative aspirations in
their teaching, such as wanting their students to gain an appreciation for the power and
beauty of their subject, quite beyond facts and concepts., This aspiration is clearly an
incentive that policymakers and administrators will want to use in encouraging good
mathematics education—helping faculty members to do what they claim they want to do.
Clearly, there are lots of references to the notion of mathematical power in the NCTM
Standards. We must give scope and expression to this notion in curriculum and teaching.

Thus, the central challenge to algebra teaching at all-levels, whether addressed to
the education of all students or to specialized education, is to shift the balance from the
mimetic to the transformative. A great irony here is that advances in science and
mathematics themselves have had a transformative impact. In discussing the Caopernican

Revolution, Kuhn {1957} describes this impact as follow:::
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Though the Revolution’s name is singular, the event was
plural. its core was a transformation of mathematical
astrenomy, but it embraced conceptual changes in cosmology,
physics, philosophy, and religion as wall.
Clearly, the Wiles proof of Fermat’s Last Theorem has this transformative character
as is indicated by Ribet {1993):
Wile's proof of Taniyama’s conjecture represents an encrmous
milestone for modern mathematics. On the one hand, it
illustrates dramatically the power of the abstract "machinery”
we have amassed for dealing with concrete biophantine
problems. On the other, it brings us significantly closer to the
goal of-tying together automorphic representations of algebraic
varieties.
We must make the teaching of algebra as interesting, important, and dynamic as
the subject itself.
Content Pedagogy
I turn now te the second idea for meeting the challenge and paradox of teaching
algebra. To begin with, | propose that we coupie with the pérspective of the transformative
teaching tradition, Shulman’s answer to the question of what one needs to know about a
subject in order to teach it. Shulman (1986, 1987) calis this kind of knowledge
pedagogical knowledge of content, which refers to:
...for the most regularly taught topics in one's subject area,
the most useful forms of representation of those ideas, the
most powerful analegies, illustrations, examples, explanations,
and demonstrations—in a word, the ways of representing and
formulating the subject that make it comprehensible to others.
Since there are no single most powerful forms of
representation, the teacher must have at hand a veritable
armamentarium of alternative forms of representation, some of
which derive from research whereas others originate in the

wisdom of practice.
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Pedagogical content knowledge also includes an
understanding of what makes the learning of specific topics
easy or difficulf: the conceptions and preconceptions that
students of different ages and backgrounds bring with them to
the learning of those most frequently taught topics and
lessons. If these preconceptions are misconceptions, which
they so often are, teachers need knowledge of the strategies
most likely to be fruitful in reorganizing the understanding of
learners, because those learners are unlikely to appear before
them as blank slates.

There are several precursors, in mathematics generaily and algebra particularly, to
Shuiman’s identification of pedagogical knowledge of content. There are also several
program models that exist, but | will not discuss them here, except to cite two: the
program model for science education at the University of Chicago articulated by Schwab
(see Westbury and Wilkof 1978} and a similar model developed at Harvard by Conant (see
Nash 1950). My favorite example in algebra is Weyl’s monograph on symmetry (1952).

Weyl presents many interesting examples including a very provocative one about
the swastika. Weyl notes that the swastika is "...one of the most primeval symbols of
mankind, common possession of a number of apparently independent civilizations." In the
book, Weyl recalls an observation he made in 1237, regarding Hitler's occupation of
Austria. He said then concerning the swastika: "In our days it has become a symbol of a
terror far more terrible than the snake-girdled Medusa’s head."” In the book he goes on to
observe: "It seems that the origin of the magic power ascribed to these patterns lies in
their startling incomplete symmetry —rotations without reflections." (p. 67) Relating
aesthetic and emotional sensibilities to the formal structure of symmetry illustrates an
extraordinary way to integrate the transformative perspective and content pedagogy in the
teaching of algebra.

| suggest that our discussion at the colloquium might spend some time identifying
these precursors and moedels. Most especially, we must recognize that pedagogical
knowledge of content {or content pedagogy) is a special form of content knowiedge and is,
theretore, subject-specific. Once it is identified, it is immediately clear that content

pedagogy is quite imporiant for teachers.
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Unfortunately, despite the preoccupation with subject matter in current concerns
about education, and despite the evident significance of content pedagogy for the teaching
and Iearhing of subject matter, the emphasis in teacher education—at least for early
childhood teachers and perhaps even early adolescence teachers—is on the generic and
not the subject-specific. Further, this situation is not based on conviction, but convenience,
as many teacher education programs are so small that subject-specific pedagogy is not
considered an efficient option, regardless of its intrinsic merit. One major policy focus must
be aimied at greater articulation between teaching and content at all levels. For one thing, it
is not clear whether responsibility for pedagogical knowledge of content lies in the arts and
sciences college or the school or college of education. However, on both the arts and
sciences side and the education side, this kind of knowledge is often recognized. Again,
our colloguium discussions might usefully address this issue.

In addition to such general ideas as transformative teaching and ~ontent pedagogy
for responding to the challenge of implementing the ideal of algebra for all students, there
are other resources that are more immediate a pragmatic. Although space does not permit
a fuller discussion, | make an observation and cite two references here, regarding such
resources. | suggest that the collogquium may wish to focus on them.

The observation is that technology applied to teaching and learning of algebra
presents a powerful new tool to addréss the questions and issues. These new tools help
make algebra an experimental science. Visualization in mathematics, empowered by
technological tools, permits a new attack on the tyranny of abstraction. Additionally, there
are two timely and significant references that should be central to the work of this

colloguium: Wagner and Kieran (1989} and Wilson (1993).
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Experience, Abstraction, and "Algebra fo- All":
Some Thoughts on Situations, Algebra, and
Feminist Research

Suzanne K. Damarin
Ohio State University

Recent research related to mathematics education points our attention toward the
constructedness of knowledge, the importance of representations (both cognitive and
sensory) of mathematical ideas to knowledge' construction, the idea that cognitive
obstacles can impede the construction of appropriate knowledge, and the idea that all
learning is situated in the sense that knowledge is constructed in response to the moment-
to-moment contingencies both within the instructional (or life} settings of students and in

relation to the habits, goals, biases, and beliefs they bring to an instructional or work

~ setting. These theoretical and empirical developments are important in and of themselves

to the development of "Algebra for All" because they provide new grounding and a "fresh
approach” to the development of new curricula. Moreover, because they are consistent
with the more general developments in the sociologies of science and of knowledge,
epistemologies and theories of knowledge, these developments in mathematics education
allow and invite new conceptual relations with "strange bed-fellows," that is, with theories
and practices developed in the fields other than physical science and psychology, the
traditional affiliates of mathematics education, and which are as remote as cultural studies,
feminist studies, black studies, and others.

Of particular importance to this paper is the potential for exchange between theories
and research grounded in feminism and the field of mathematics education. Like
mathematics education, feminist theory views knowledge as constructed, acknowledges
the importance of images and representations to the construction of knowledge,
understands the function of cognitive and affective obstacles to the construction of valid
knowledge, and argues that all knowledge is situated. As Donna Haraway states, "feminist
objectivity means quite simply situated knowledge” (Haraway 1991, p. 188, emphasis in

original).
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If we are to take sciiously both the goais and the responsibilities implicit in the
phrase "Algebra for All," we must attend not only to the nature of algebra but also to the
nature of the "All" to whom the curriculum is {or, will be} addressed. Qur history of
success and failure with the curriculum and instruction of "arithmetic for all" as entailed in
the universal requirement of schooling through grade eight cautions against the idea that a
didactic curriculum of essential facts and procedures will reach all students.

At the Algebra Initiative Conference, Marjorie Enneking described one example of a
student whose experience with "3 * O = 0" s¢ affected her that she could not engage
with mathematics in subsequent years. Although there is no empirical research base to
identify and verify the frequency of similar occurrences, those of us who regularly collect
mathematical autcbiographies or discuss affect toward mathematics in our classes can
testify to the prevalence of such anecdotal evidence of the failure ¢f arithmetic and algebra
instruction to meet the contingencies of student knowledge building, and to the resultant
development, among many students, of obstacles to learning which are both cognitive and
affective. Perhaps because these obstacles cccur more frequently among girls and women,
or perhaps because evidence of their cccurrence is most often fo}thCOming in collegiate
courses dominated by women (e.g., methods courses for elementary teachers, courses on
women and science), such obstacles seem to affect the mathematical development of
many women, in particular.

Many of the stories which reveal the initial occcurrence of cognitive-affective
obstacles to further learning of mathematics are stories of perceived {and unrelieved)
mismatch betweer. the "facts of mathematics" and the "facts cf life." At least in my
hearing, these stories tend to focus on the introduction of particular abstract objects and
procedures: zerc (and the empty set), irrational square roots, quctients of fractions,
products of negative numbers, and various phenomena of algebra.' In all cases, the
objects named are remote from direct experience, or at least fram experience which has
been articulated in relation to the meanings of mathematics. In the case of zero, for
example, every child who has played Go Fish! (or a similai game) has enjoyed experiences
with the empty set; but these experiences are typically remcte from the salient activities of
arithmetic class. What seems to have been problematic for Enneking’s student, and for
many of my own, is the relative salience, within arithmetic classes of the experience of

three-ness (and its naming as 3) when compared with the experience of none-ness {and its
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naming as Q). This is an issue of the situatedness of knowledge; and it points to some very

real questions about the relations between experiences and abstractians.
Abstraction and Experience

The theme that many examples should precede abstraction is one that runs through
the discussions of algebra curriculum reform. This theme also occurs in the conclusions of
Women's Ways of Knowing, a study of women's epistemology by Mary Belenkey and
colleagues:?

Most of these women were not opposed to abstraction as such. They found

concepts useful in making sense of their experiences, but they balked when

the abstractions preceded the experiences or pushed them out entirely. Even

the worﬁen who were extraordinarily adept at abstract reasoning preferred to

start from personal experience. (Belenkey et al. 1986, pp. 201-202)

These findings suggest that a serious attempt to teach the abstractions of algebra and
mathematical modeling to all will require either the development of activities that students

are willing to count as "personal experience," or a better understanding of the
extracurricular personal experiences of young women and how these experiences might be
transported into mathematics classes,

Feminist philosopher Maria Lugones {1987} discusses "travel” of an individual from
one situation to another. Iﬁ her construction of situated ¥nowledge, each person is viewed
not as a single unified knower but as a confederaticn of knowers; as a person moves from
one situation to another, she or he becomes a "different knower"” whose actions and
understandings are predicated upon knowledge particular to the new situation. In order for
a person to function comfortably and appropriately in a situation it is important for her or
him to share in the language, norms, local history, and human bonds of that site.
Mathematics educators recognize the importance of the latter understandings when they
argue that instruction must engage students in the "culture™ of mathematics.

For the woman cited by Marge Enneking and for many others, by the time the
student reacHes grade eight or nine, mathematics class is already a different culture from
personal experience and requires a "different knower" in the sense of Lugones. The
problem for the teacher (and for the curriculum developer) is to recognize the need for

travel between the cultures of algebra and personal experiznce and to facilitate that

movement. This entails an understanding of not only the ways in which mathematics class
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differs from the personal experiences of young women but also the links that students

might construct in an effort to bridge those differences. In the following paragraphs, | offer
examples and discussion related to some of these differences.

The ways in which women personally experience mathematics outside of
mathematics classrooms include not only the use of numerical and geometric reasoning in
the pursuit of personal tasks but also the receipt of numerous messages concerning the
"maleness of mathematics." Newspaper articles, parents, guidance counselors, TV sit-
coms, and even Barbie dolls all deliver messages regarding the difficulty of math for
females in particular, the "inferiority” of women’s performance in mathematics, and lin
many cases} the lesser importance of mathematical achievement to women than to men.
Regardless of the {un}truth of these messages, they are a "fact of life" salient in the
personal experiences of young women; efforts to bridge personal experience and
mathematics classes must recognize these messages explicitly and deal with them
(Damarin 1990Q). Bringing these messages (and analogous messages related to race) into
mathematics class for the purposes of countering them is critical to making algebra
accessible to all.

Other concerns are more directly related to the setting of mathematical problems
and the ways in which these are related to personal experience. The way in which a
problem is posed can have ramifications for the ways in which students take it up and/or
seek relations to personal experience. In the next few paragraphs, | discuss many issues of
experiences which surround the following interesting problem which originates in the
Quantitative Reasoning Project and which was presented by Alba Thompson at the Algebra
Initiative conference.

Fred and Frank are fitness fanatics. They run at the same speed and walk at

the same speed. Fred runs half the distance and walks half the distance.

Frank runs half the time and walks half the time. Who wins when they run a

race together?

As reported, the first response of most students to this question is that the race will
culminate in a tie. Upon being told that someone wins outright, the question becomes how
to think about this problem. Qne can begin by thinking about Frec or about Frank.

Thinking about Fred's behavior is a relatively simple matter. Invocation of the distance

formula is straightfc ward in part because experience with races suggests a fixed distance
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and brings to mind halfway markers, mileposts, a known number of laps around a track, or
other means of conceptualizing Fred's ability to divide the tetal distance. There is no real
mystery as to how he can manage to split the distance easily for walking and running.

But Frank's behavior, based on the division of time, is a different matter.
Experience with races suggests that total time will not be fixed until the race is over;
moreover, the passage of time spent on a racecourse is not marked with the same neat
divisions as distance. How, then, can a student extrapolate from personal experience to
think about Frank‘s behavior? Attempts to model Frank’s behavior lead to confusion and
questions: how does he allot exactly half of his time to each of two activities, especially if
he doesn’t know what the total time required will be?

Some would be quick to point out that a mode! for Frank’s behavior is not
necessary to the solution of this problem. For students {such as the young woman cited by
Marge Enneking) whose relation with mathematics has been made tenuous by repeated
assertions that "you don’t need to understand, you just need to know/do," this observation
is not helpful. For them, it shifts the domain of relevant experience from that of races and
division of activity aloné various dimensions to that of mathematics classes and failures to
understand. In the sense of Lugones, this-comment is an invitation to travel from being a
"knower"” of races to being a "knower" of mathematics as "an alien world designed by and
for people different from us {Turkle, p. 119)."

Interestingly, in @ generalized way, Frank’s behavior is connected with the life
experiences of young women. The division of time {between family and career, between
role of wife and role of mother, between care of the self and care of others) is a primary
life issue for women. Indeed, sociologist William Maines (in Fennema 1985} has argued
from his data that the need of pubertal young women to prepare for multiple roles of
career, wife, mother explains the inability of {some) young women to give to the study of
mathematics the time and attention it requires. Whether these life conditions make female
students more likely to focus on Frank rather than Fred is a researchable gquestion. 4
However, in this life context of time-sharing among muiltiple activities, the "news" that
Frank actually wins the race might be useful and encouraging information to young
women, Extrapolating mathematical findings to female personal experience through class
discussion might help bridge gaps between women and mathematics. Although the -

problem setting involves named people and familiar events, it is exceedingly abstract; it
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demands a suspension of disbelief concerning the behavior of people in races. As stated,
the problem projects behavior and projects it a way that few would find plausible. (Why
on Earth would they walk so much? Wouldn’t the trailing racer switch to running more
when he saw he was behind?) A change in setting might alleviate the plausibility issue;
consider
Racing Fans Disappointed

Courtesy of racing netwoark news

Fans at the recent race between Fred and Frank were counting on the

time triais in which the contestants consistently walked at the same

speed and ran at the same speed. In the actual race, Fred walked half

the distance and ran half the distance. Frank walked half the time and

ran half the time. Fans who came out expecting a photo finish went

home disappointed.

This shift of the problem into the past tense and the presentation of it as a news
clipping change the relations to experience in several important ways. First, implausibly
rigid adherence to strategy on the part of Fred and Frank need not be assumed {indeed, the
reader can assume that the loser would likely change strategy for the next race}. What we
have now is a report on a past event, but a report with critical missing information. Such
reports, and the strategies for "filling in the blanks" form the experience base to which
students might resort. With the simultaneous explosion of information on the one hand,
and growth of cryptic reporting of information (in the style of USA Today) en the other,
the ability to read beyond the "givens" may be a mathematically based skill of increasing
social importance.

As a final note on Fred and Frank, | would note that neither the maleness of both
racers, nor the setting in athletics is likely to affect women’s ability to relate to this
particular problem (although problem sets in which all actors were male and/or ali prablems
concerned athletics might have such an effect). Indeed, by naming both racers as male, the
problem writer has avoided attaching sex to winning or losing.

The problem of Fred, Frank, and their fitness routines is interesting mathematicaily,
more interesting than most problems at this level. | hope | have amply demonstrated that it
is also interesting as a domain for exploring the relations between abstraction and

experience. | would hypothesize that, across many problems, the complexity of the
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abstraction-experience relationship is directly related to the mathematical interest of a
problem under consideration.

As we move toward the creation of a curriculum of "Algebra for All" which is both
relevant to the lives of students and productive toward preparing all students for the 21st
century, it is important to incorporate a fuller understanding of the experiences and
situations of all students. This will entail acquiring a better understanding of the
particularities of those situations and the creation of new ways of promoting student travel
between experiential and mathematical knowledge. Hypertext may provide a valuable
resource for delivering instruction and problem solving assistance (scaffolding) in ways that
reflect and honor student experience. However, before we can construct appropriate
hypertexts, we must gain better insights into the lives and experiences of all students. In
this regard, the fields of sociology, women’s studies, black studies, and other ethnic
studies may be as valuable to the construction of the mathematics curricula of the future

as psychology and physics have been to the curricula of the past.
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Notes

1. There is another class of stories about negative experiences in mathematics classes:
these stories concern instructional practices which students {again, primarily females}
found threatening. Practices such as relay races in which students write answers on the
board and other activities which call for competition and/or public display of skill are cited
by many women as debilitative to their mathematics achievement and/or attitudes. {Also

see Isaacson 1991).
2. Belenkey, Clinchy, Goldberger, and Tarule studies 135 women from 5 educaticnal

settings ranging from an elite women’s college to a center in which welfare mothers were

taught skills of parenting, homemaking, and employability.
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Educating Teachers, Including K-8 Teachers,
to Provide Appropriate Algebra Experiences

Naomi D. Fisher
University of lllinois at Chicago

The first section of this paper leaves in place my thoughts and musings before the
conference. In the second section, | share some of my reactions to the discussions as
they relate 1o my original concerns.

Introductory Thoughts
The Algebra as Language Metaphor

The opening line of the conceptual framework for the conference, "Algebra is the
language of matheinatics,” invites speculation on the uses of language in general and how
these uses may be interpreted for the role of algebra. Some of the uses of language are
suggested below for the purpose of considering how teacher education may enable
teachers to use and teach algebra as a language. But the metaphor of algebra as language
also begs the question of whether or not tHe metaphor is itseif adequate or proper as laying
the groundwork for disguisition.

Certainly, one level of language that algebra serves admirably is to put information
into succinct and unambiguous form which, in turn, allows easy manipulation of the
symbols to reveal basic relationships. Solving equations or systems of equations would
seem to be the prototype of school algebra. "Solving for x" has a mystique that transcends
our classes. This is likely the level of language that is being dealt with when we talk about
algebraic skills. | would like to pose the guestion {and perhaps introduce some expressions
here), "What level of language would we be addressing if we were to talk about developing
algebraic insight or algebraic intuition?” Since mathematical insight and intuition are much
more about thinking mathematically than is proficiency in manipulative skills, intuition and
insight should be essential to our educational program. Based on my intuition about
learning, these levels of learning should not be taught sequentially as hierarchical abilities,

but somehow be braided together in instruction.
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Do we study language for its own sake or as a means of communicating
knowledge? We can talk about the structure of language itself, questions of grammar or
rules. We can look at the pieces, vocabulary development. F;erhaps scme ¢f the way out of
this dilemma is to push the algebra as language analogy further, language as a means to
shape, critique and disseminate cultural knowledge. Language is related to comprehension.
Language reaches its pinnacle in literature. What are the "literary" aspects of algebra that
are or should be in our K-8 curriculum?

Preparing Teachers for Teaching the Levels of Algebraic Language

What do teachers need to know if we are thinking of aléebra in a cultural context?
As we are taking on the challenge to educate a diverse population, including such
categories as gender, learning styles, and cultural background, we are in the midst of a
paradox. While it would seem that different contextual settings are appropriate for each
group, we are trying to achieve some basic, universal educaticn which would equip all
these factions of our population to understand cne another and contribute to cur society.

Teachers would likely benefit from knowing about the development of numbers and
algebraic structures in different cultures with two purpcses in mind: recognizing that there
is diversity in representation and in popular use of algorithms, and seeking to identify the
abstract concepts underlying each system. It is alsc possible that knowledge of the
development, the intellectual and historicat influences, of algebra as we know it would
enhance the reccgnition of cultural diversity, on the one hand, but provide awareness of
the need te find a common form ¢f expression on the other hand. Further, the study of the
development of arithmetic and algebra in different cultural settings should highlight the
cultural bases for the development of mathematics {i.e., what motivated civilizations to
start making mathematics).

In educating teachers, it is especially critical that connections with other fields of
mathematics, especially geometry, and the real world be made as an essential part of the
subject matter. Overwhelmingly, the population can be characterized as users of
mathematics {unfortunately, the reality in this country may better be described as avoiders
of mathematics) rather than creators of mathematics.

A question that arises is at what point do we want t¢ separate college students
who are studying mathematics into tracks according to which they will be users of

mathematics? Some breakdowns according to future careers/professicns are: teachers of
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primary school mathematics, teachers of elementary school mathematics, teachers of high
school mathematics, teachers of college mathematics, research mathematicians, engineers,
statisticians, cornputer scientists, and applied mathematicians. ldeally, we would be able to
devise a core curriculum that allowed these groups to associate with one another for some
of their mathematics education. For teachers, it is especially important that they be aware
of and, indeed, know a variety of people who are serious users of mathematics. The often
heard student refrain of "what’'s it good for" would best be answered before it is stated,
Teaching mathematics with a regular, nonartificial infusion of anecdotes and information of
its place in people’s lives would be a strong position for teaching mathematics rather than
the usual defensive posture. The ultimate avoidance of a contextual mathematics, the worn
admonishment of "you’ll need this later,” will become archaic, one hopes.

Post Conference Remarks

The algebra as tanguage metaphor really took on a new aspect in light of the
kaynote address of Victor Katz on the learning arid teaching of algebra in the tast 4,000
years, The first shock was that cur stock algebra word problems have been around from
ancient times. The difference between then and now is that problems were solved by
verbal algorithms without the benefit of algebraic symbols (i.e., there were no equations).
Ancient algebra texts scunded astoundingly contemporary but they looked weird by our
standards. What the ancients did have as a resource was the power of geometric models
to inform and give structure to their methods.

In my consideration about language and algebra, | would like to pose the possibility
that for learning algebra, geometry is a potent and eloguent visual language for teaching.
Continuing in an exploratory mode, considering ways to truly talk about algebraic
relationships may be an important link for preparing students for the symbalic
representation of algebraic relationships. Within the discussions at the conference, there
did seem to be agreement on having students experience algebraic situations before
abstractly presenting or codifying the material. My assertion is based on collecting rather
diverse statements—the computer experiences advocated by James Kaput, the importance
of students looking at examples befare proving results stressed by Michael Artin, and the
algebraic reasoning examples of children’s experiences presented by Alba Thompson, to
mention a few —which did show the variety of contexts in which it should be possible to

let students "muck around" before settling down into formal notation or proof. This may
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be the avenue for developing "algebraic intuition" about which | expressed concern in my

first notes.
A Last Thought

The call for "algebra for everyone" has the ring of a political, not an educational,
statement. The historical perspective we gained at the conference underscored that algebra
has served political ends in the past, so we are reinterpreting an ancient tradition. The
consistency in the new movement, as so strongly presented by Robert Moses, is that we
are recognizing that algebraic know-how gives individuals power. But, whereas in the past,
the policy was to restrict algébraic power to an elite class, we now are challenged to see

that that knowledge is available to the many.
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On the Learning and Teaching of Linear Algebra’

Guershon Harel
Purdue University

Jacob, a prospective mathematics teacher at the end of his senior year, was given

the problem:

V is a 40 dimensional vector-space. U and W are subspaces

of V,dimU = 2, dimW = 3, Candim (U N W} = 0?
Jacob responded: "No, because there must be an overlapping between the two." From a
further conversation with him on why should U and W overlap, it turned out that he simply
viewed U N W, and V as sets consisting of 2, 3, and 4 items, respectively, from which he
concluded that U N W must be non-empty; the data concerning vector-space, subspace,
and dimension was totally ignored by Jacob. When the instructor asked "Is
U M W a vector-space?,” Jacob was unable tc respond, nor was he able to respond to the
guestion, "What is the definition of vector-space?” And when the instruc.ur asked Jacob
to give an example of a vector-space, he responded:

A polynomial ... The set of ali polynomials of degree 10 ... The

set of all polynomials of degree Q. No, the first is not, because

when you multiply you get a higher degree so it is not closed,
Responses like Jacob's are not uncommon; they reflect the confusion studen . have with
linear algebra concepts (Harel 1985).

Vinner (1985} would say that students like Jacob have failed to build adequate
concept images for the concept definitions we present to them. A concept definition,
according to Vinner, is a verbal definition, appearing in a textbook or written by the
instructor on the blackboard, that accurately ﬁiscribes the concept in a noncircular way.
A concept image, on the other hand, is a mental scheme, a network, consisting of (a) what

has been associated with the concept in the person’s mind and (b} what the person

"This short paper is part of a paper entitled *The Linear Aigebra Curriculum Study Group Recommendations;
Moving Beyond Concept Definition,” to be published in the College Mathematical Journal.
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can do in regard to the concept. It may include, for instance, analogies and relationships to
other concepts, propositions on or relating to the concept, examples and nonexamples,
ways of solving certain problems. It is worth mentioning that concept images do not
necessarily include spatial visualizations, as the term image may suggest. In fact, it was
found that some people possess effective concept images, and yet their mode of thinking
is purely analytic, not spatially visual {Eisenberg and Dreyfus 19886).

The most important indicator for understanding a concept is the ability to solve
problems related to the concept, where by solving a problem, it is meant knowing both
what to do and why. This indicator, however, is too general, since problems can be of
different levels. In my research on the concept of proof (éee below), | have defined four

other indicators for understanding a concept:

L The ability to remember, not just memorize;

* The ability to think in general terms;

] The ability to communicate ideas in one’s own words; and
° The ability to connect ideas.

A student with an effective concept image is one who has these abilities relative to the
concept. In order for linear algebra students to develop effective concept images, they
must learn to not just memorize concept definitions but must construct rich and effective
concept images that will enable them to remember what they learn, think in general terms,
communicate, and connect mathematical ideas.

For most students, the construction of an effective concept image is a long and
painstaking process. It is not always easy for us, as teachers, to realize this fact, for, as
Piaget (1960) pointed out, a concept is deceptively simple when it has reached its final
equilibrium (i.e., has become part of the concept image), but its genesis is much more
complex. The building of an effective concept image in linear algebra requires a majer
effort and sufficient time on the part of the students as well as their teachers. Yet, we
allocate only one course in the entire undergraduate mathematics curriculum to linear
algebra. In comparison, as Alan Tucker {1993} has pointed out, we devote an entire year-
and-halt of the lower division core mathematics to calculus. Even with this amount of time,
calculus is still difficult for students, a fact which raises doubts on the sufficiency of the

time allocated to linear algebra.
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In the case of calculus, we understand that students must build solid concept
images for on-variable calculus concepts and, rightly so, we devote two courses to this
goal, before we introduce multivariable calculus, For example, we understand that students
must gradually abstract the idea of derivative by first dealing with it extensively in the case
of one-variable functions, then abstract it into higher, yet spatially imaginable, cases [i.e.,
real-valued functions f: R - R and R®- R}, and only then move to general.functions f:
R" -+ R™. On the other hand, we do not seem to have the same patience for the
abstraction process in linear algebra. Nor do we take into consideration the obvious fact
that linear algebra concepts are indispensable for understanding many multivariable
calculus ideas. In most cases, ideas that require linear aigebra background are shuffled
under separate sections of exercises labeled "Optional.”

The imbalance between the time allocated to calculus and that allocated to linear
algebra is, in fact, even greater because high school mathematics is geared toward
calculus needs more than linear algebra needs. This argument may not be true if examined
sélely from the viewpoint of content. High school curricula does include topics such as
systems of linear equations, analytic geometry, and Euclidean space; all are part of linear
algebra. But these topics are taught in high school in ways that have little to do with the
basic ideas of iinear algebra. High school students are not prepared for the objects,
language, ideas, and ways of thinking that are unique to linear algebra.

From the students’ point of view, calculus is a natural continuation of the
mathematics they learned in high school. After all, students deal with real numbers and
functions of real numbers in high school, and continue to deal with these objects in
calculus. Also, they are often impressed by the power of calculus tools to help them =olve
problems in familiar domains, such as finding the area of nonstandard figures, or modeling
projectile motion. In contrast, students make little or no connection between the ideas they
learn in linear algebra and the mathematics they fearn in high school. In the current
situation, the only connection that potentially exists between high school mathematics and
linear algebra is the studv of systems of linear equations. But even this connection is
superficial. High school students’ involvement with systems of linear equations amounts to
learning a solution procedure for 2 x 2 and 3 x 3 systems. They do not deal with matrix
representations of these systems, questions about existence and uniqueness of solutions,

relations to analytic geometry of lines and planes in space, geometric transformations,
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matrix algebra and determinants. Evidence that students place a low value on the
relevance of linear algebra for high schoo! mathematics can be derived from a recent
survey of mathematics education graduates of one major university in the United States.

In this survey, 45 percent of respondents believed that the value of linear algebra to their
profession is marginal or useless, in contrast to an average of only 13 percent who thought
s0 about calculus.

Clearly, there is a need to prepare students for the unique environment of linear
algebra prior to their first exposure to this topic in college. Below | will discuss two ideas
briefly: one deals with the need for and feasibility of incorporating linear algebra in high
school, The other, apart from this, suggests how, prior to their first course in linear
algebra, students can be acquainted with the environment of linear algebra.

[ believe that there should be an introduction to linear algebra in high school, The
idea may seem too ambitious to some. But if we believe in the pedagogical importance of
and the need for a continuity between high-school mather tics and college mathematics
and we recognize the problem of the insufficient time allocated to linear algebra in college,
then it should be clear that an introductory treatment of linear algebra in high school is a
necessity. Introducing linear algebra in high school does more than prepare students to do
matrix algebra and compute determinants. It will lay the grounds for-building rich and
effective concept images for linear independence, spanning set, vector-space, and linear
transformation. Students who would go through a linear algebra program in high school
wilt become motivated and more cognitively prepared to abstract these and other ideas in
their first college course in linear algebra. This is a worthy long-term investment which
requires a restructuring of the existing high school mathematics curricula. | suggest that
this restructuring take place in two areas: First, the traditional high school topics—such as
systems of linear equations, analytic geometry, and Euclidean space—be taught from a
linear aigebra viewpoint. Second, given the imbalance currently existing between the time
allocated to linear algebra to that allocated to caiculus, | suggest to reduce the high schoo!
program in calculus.

The following is a very brief description of a linear algebra program which | have
developed for and implemented with upper level high school students. Results from several
teaching experiments showed that the program was highly successful {(for more details,

see Harel 19856 and 1989). The program consists of three phases: the first phase deals

144

TN



faj

(€)

ERIC

Aruitoxt provided by ERic

@@@

with the geometric spaces of directed line-segments. The objective of this phase was to
begin building effective, visually oriented concept images for important linear algebra
concepts. Further, the construction processes of these concepts were chosen to be
analogous to their construction in the éeneral case. For example, when dealing with the 3-
dimensional geometric model, a basis can be defined as three noncoplanar line segments,
But such a definition is restrictive and model-dependent, since it does not transfer to
vector-spaces in general. In this program, this process is fully explored by showing how
the concept of basis in a geometric model is developed from a spanning set.

After the central ‘concepts of dependenre, independence, linear combination, basis,
and dimension are thoroughly studied in the line, plane, and space, | introduced the second
phase in which the algebraic spaces R', R? and R® along with these central concepts are
built through the idea of vector coordinates. In fact, the unit deaiing with these algebraic
spaces was mostly constructed by the students themselves through individual and team
projects. One of the pedagogical values of this stage is that students could see in a
concrete environment how one mathematical system can be transformed into another
system which is more amenable to computational techniques. The resulting system is, of
course, isomorphic to the original. Finally, in the third phase, these central concepts are
defined a third time in R, with the introduction of linear transformation and their matrix
representations in R? and R®. More specifically, this phase dealt with: analytic geometry of
the plane and space; systems of linear equations {algebraic and geometric investigations);
linear transformations in the plane and their matrix representations; and matrix algebra.

The LACSG recommendations have set forth the standard for the first course in
linear algebra to be an intellectually challenging course, with careful definitions and
statements of theorems, and proofs that enhance understanding. From a cognitive and
pedagogical viewpoint, a linear algebra course that stresses proofs is both a necessity and
a challenge. It is a necessity because the emphasis on proofs is indispensable for the
development of rich and effective concept images in linear algebra. Without understanding
the reasoning behind the construction of concepts and the justification of arguments,
students will end up memorizing algorithms and reciting definitions. It is a challenge
because, as we all know, proofs are a stumbling block for ma:y students. Research has
shown that many students carry serious misconceptions about proofs. For example,

students do not understand that inductive arguments are not proofs in mathematics {Martin
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and Harel 1989); they do not see the need for deductive verifications (Martin and Harel
1989; Venner 1977); they are influenced by the ritualistic aspect of proof (Martin and
Harel 1989); and they do not understand that a proof confers on it a universal validity,
excluding the need for any further checking {Fischbein and Kedem 1982). This situation
requires, therefore, careful consideration and special attention to the teaching and learning
of mathematical proof.

In the curre-nt situation, the first course in linear algebra, if it emphasizes proofs,
would be students’ first experience with algebraic proofs, because calculus often is being
taught proof-free and, traditionally, the idea of proof. as a deductive process, where
hypotheses lead to conclusions, is stressed in the teaching of geometry but not in the
teaching of algebra. Philip Davis and Reuben Hersh {1982) pointed out that "as late as the
1950s one heard statements from secondary school teachers, reeling under the impact of
the ‘new math,’ to the effect that they had always thought geometry had "proof’ while
arithmetic and algebra did not.” The death of the "new math" put an end to algebra proofs
in school mathematics.

In the last few vears, | have been working on the epistemology of the concept of
mathematical proof with students at various levels. One of the conclusions coming from
this work is that a major reason that students have serious difficulties producing,
understanding, and even appreciating the need for proofs is that we, their teachers, take
for granted what constitutes justification and evidence in their eyes {Harel, in preparation).
Rather than gradually refine students’ conception of what constitutes evidence in
mathematics, we impose on them proof methods and implication rules that in many cases
are extraneous to what convinces them. This begins when the notion of proof is first
introduced in high school geometry. We demand, for example, that proofs be written in a
two-column format, with formal "justifications” whose need is not always understood by a
beginning student (e.g., Statement: AB = AB. Reason: Reflexive property). Also, we
present proofs of well-stated, and in many cases obvious, propositions, rather than ask for
explorations and conjecturing. As a consequence, students do not learn that proofs are
first and foremost convincing arguments, that proofs {and theorems) are a product of
human activity, in which they can and should participate, and that it is their responsibility

to read proofs and understand the motivation behind them.
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No one can expect to remedy studeiits” misconceptions and "fill in" other missing
conceptions about proofs in one single course. To meet the challenge to teach a linear
algebra course that emphasizes proof, we must succeed in educating our students
throughout the mathematics curriculum in school and college to appreciate, understand,
and produce proofs. The movement toward this important goal cannot start in the first
course in linear algebra; it must begin in the high school years and continue into the
calculus courses. In fact, with a careful approach and a suitable ievel, we should begin
educating students about the value of justification (not mathematical proof, of course) in
the elementary school years. Despite this, | bekeve that an emphasis on proof in the first

course in linear algebra, as was recommended by the LACSG, is vital.
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Algebra: The Next Public Stand for the Vision of
Mathematics for All Students’

Henry S. Kepner, Jr.
University of Wisconsin-Milwaukee

Across the state and nation, the call for credibility in school mathematics is focused
on a thing called "algebra”—emphasized by the call of algebra for every student. First, this
is a response to the recognized need for increased mathematica! reasoning and application
by all members of society. No longer can the work force function with only a few
individuals with mathematical sophistication beyo-nd arithmetic! Second, it is the
recoghnition of the inappropriate use of mathematics, specifically algebra and calculus, as
gate keepers in our society. Tracking in mathematics is a major force in effectively
excluding individuals from many academic and vocational pursuits.

We must involve all of our constituencies — students, parents, leaders from
business, and educators at all levels—in addressing the challenge of algebra for all
students. The task will be a difficult, time-consuming one—for everyone involved —but we
cannot ignore the need. The task will involve major changes of beliefs about what algebra
is, how one does algebra, and who can learn algebra. Technology has opened up
mathematics to individuals in just about every line of work, We must challenge the widely

held American belief that mathematical ability is hereditary.

Redefining Algebra

School algebra evolved as perfoermiance of symbolic algebraic procedures, such as—
solve, simplify, factor—typically as isolated, symbolic manipulations. Recently, an Algebra |
student reported: "Of course it doesn’t make sense. This is algebra; it's not supposed to
make sense." We must do something different! The vision of algebra for all students must
be clarified and communicated openly within the education community and beyond. First,
what is the algebra deemed necessary for all students? Second, how do we change
expectations about what algei)raic performance is —for teachers of algebra? for students?

for parents? for postsecondary gate keepers? for employers? for district administrators?

"This article appeared in Fducational Forward, Wisconsin Departrrent of Public Instruction, May 1993.
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Third, how do teachers, schools, districts, and states monitor student performance in
using this algebra? In the fast changing world of mathematics, science and technology,
there is no single answer to these guestions.

Lynn Steen (1992), director of the Mathematical Sciences Education Board and
former president of the Mathematical Association of America, states, "For most students
the current school approach to algebra is an unmitigated disaster. One out of every four
students never takes algebra... And half the students who do...leave the course with a
tifelong distaste for mathematics.”

Algebra as a Human Endeavor

Numerous groups and proiects are making recommendations on algebra for all
students. Most call for the immersion of algebra skills in an applied and conceptual
curriculum. They suggest the building of an algebra curriculum extended over many years,
from the primary grades on, where students search for and describe mathematical
patterns. In such s program, algebraic reasoning, descriptions, and symbols are used to
describe the world around us!

Many of the projects recommend the concept of function as the unifying theme.
Special attention is given to building tables of data and their graphs from observed patterns
and experimental data. Experimental data colfection from the sciences, social studies, and
real world call for comparison hetween two traits or characteristics in contextual problems.
"How does one trait vary as we change the other?" This is a powerful meaning of the term
variable, which is narrowly used in traditional algebra of symbo! manipulation.

This is the aigebra that is used by most adults in everyday life. The reading and
interpreting of graphs or tables of data that may show relations between factors. Major
decisions are made on the interpretations of these relationsl!

Even before symbol manipulatior skills are learned, students should see and discuss
meaningful linear, quadratic and exponential data. Such data exists in middle school
science and social studies material. Well-chosen examples introduce students to a major
raason for using "algebra” —modeling real-world situations. Attention to this view
reinforces mathematical connections, not only a nod to applications outside of

mathematics but to connactions within mathematics to measurement, statistics, and
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geometry. Additionally, there are connections among algebraic representations—graphic,

numeric {often tables), and syrnbolic.
The Tools of Algebra

We must publicize the set of tools that are meaningful in the learning and doing of
algebra. Technology (graphing caiculators and spreadsheets) and manipulatives (e.g.,
algebra tiles, integer chips, geoboards) are showing positive value in students’ conceptual
base and use of algebra. This is particularly important for students who approach algebra
with a weak or uneven background and low self-esteem in mathematics. In the past, the
use of technology has been delayed until students could do symbolic manipulations by
hand—just as was once required with long division and messy fraction calculations. Now
there are several algebra curricula which require, or strongly encourage, the use of
graphing calculators on a regular basis. At today's prices, a classroom set of 30 calculators
is approximately $2,000, the price of one computer workstation.

Algebra for All in a Variety of Ways

As districts move to consensus on aigebra for all students, the implementation plans
vary. In some cases, such as Milwaukee Public Schools, all students will be in algebra by
the ninth grade. In other districts, a challenging middle grades mathematics program builds
algebraic reasoning and multiple algebraic representations of relationships across the
curriculum. Many schools use the Wisconsin Applied Mathematics Guidelines, which

includes algebra in an integrated program for traditionally noncollege-bound students.

Changes in Postsecondary Mathematics

While often slow to change, college requirements and examinations are beginning to
change. At UWM, the course, Contemporary Applications of Mathematics, is offered as an
alternative to Intermediate Algebra as mathematics competency for university graduation. |
taught this course in the Mathematics Department in fall 1992, and ( will teach it again
next fall. All my students had struggled with traditional algebra several times in high school
and postsecondary courses. While their math b;ackgrounds had many holes, | found these
students to be good at mathematical reasoning when done in contextual settings. They
were involved, and often excited about the topics which included management sciences
(networks, scheduling, and linear programming}, statistics {sampling, surveys, and

statistical inference using confidence intervals), social decisionmaking {weighted voting
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systems, fair divisicn and apportionment, and game theary) and exporential growth and
applications. Many of these students were slow and poor in algebraic manipulation, but
they developed .'gebraic reasoning and representations for significant mathematical
settings they would have never seen in Intermediate Algebra.

A change of view on what algebra is will require thorough, on-going discussicns
about expectations with staff, school administraters, parents, and community members.
First reactions often will be similar to those encountered when the inclusion of calculators
in the elementary grades was first introduced. We must be ready to carry ¢n the dialog
in-depth and over time.

As education leaders, no matter our levels of responsibility, we must be ready to
respond to parents, the public, and colleagues on expanding mathematical knowledge
beyend arithmetic for all students. This is a challenge consistent with the NCTM Standards

and the national concern for improved mathematical power.

References
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Report of Working Group 3

Susan S. Forman
Mathematical Sciences Education Board

During the early stages of their discussion, the group agreed on the following

premises:

The technical work force comprises all employees in tachnical positions,
including those with high school, associate, bachelors, or advanced degrees.
Students need to master two things to be able to succeed in the technical

work force: appropriate mathematics content and skills for independent

learning.

Further discussion focused on the need to identify the "big ideas” that students ought to

know; organize the algebra curriculum so that students learn to use mathematics as a

resource to solve problems and model situations; and create a mathematics program that

values diverse ways to succeed.

Areas of consensus:

There is a common core of mathematics that a!l students shoutid study
through grade 11.

Algebra should be a significant part of that curriculum, although not
necessarily a discrete course.

Two-year college faculty need to develop courses for technical education
based on concepts and skills developed through the study of algebra.

The mathematics community needs to gather better information about the
kinds of mathematics and reasoning skills that are needed in the work force.
The education community needs better information about what schools
should be doing to prepare students more effectively for the school-to-work
transition.

A broad spectrum of people {mathematicians, mathematics educators, and
users of mathematics) need to be involved in the effort to change the

curriculum and improve the ways in which algebra is learned and taught.
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All mathematics courses (K-16) should integrate preparation for the technical
work farce into the curriculum; pedagogy in those courses should prepare
students to become independent learners of mathematics and other technical
subjects,

The mathematics we are teaching to 7th and 8th graders is .t of date.
These courses were developed prior to World War Il for students who did not
expect ta continue their formal education beyond those years and were
intended to help students develop "shopkeeping” skills in mathematics. The

courses need to be revisited and redesigned.

There were no real areas of disagreement.

Recommendations

All students should study the same mathematics curricuium through grade
11, but not the curriculum that currently exists. Mathematics courses in
grade 12 should offer many alternatives. The mathematics curriculum should
bte grounded in problemsolving that reflects real-world situations and offsrs a
variety of methods of solution. Assessment should be an integrated part of
every course. Students should have opportunities to participate in group
work, make appropriate use of technology, and develop their communication
skills. including reading and writing technical material.

Community college mathematics faculty must be invalved in curriculum
development in technical areas —health, human services, business and
information management, agriculture and agribusiness, and engineering and
industry. They also must take an active role in needs assessment and
articulation with secondary schools and 4-year colleges and universities, The
2-year college mathematics curriculum should provide students with wide
options, including transfer to 4-year colieges. In some cases, intervention
programs may be needed to prepare students for transfer.

Research is needed into the kinds of mathematics students will need to be
successful employees in a technical work force. Discovering how
mathematics is used in the workplace is a subtle research problem that
should be carried out by mathematicians who can recognize when math is

being used in situations that do not look like textbook examples.
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Algebra, Jobs, and Motivation

Paul Davis
Worcester Polytechnic Institute

For all types of students, the first exposure to algebra is the beginning of a
transition from numbers to letters, from concrete to abstract language. The importance of

learning algebra as a language rather than as a set of memorized rituals will not be

‘apparent until students recognize its power as a problem solving tool. Important questions

of "Why?" and "What if?" can be posed and answered in this new language, a key feature
too often concealed from students.

A core set of algebra skills can be defined by identifying the kinds of problems the
target audience needs to solve. Besides defining the core, those problems must motivate
the study of algebra. Indeed, one could argue that no concept of algebra should be taught
unless it can be motivated by a problem that is likely to be part of the students’ experience
in the near future. Unfortunately, the mathematics itself may be hiding in a spread sheet,
for example., Or its real value may appear in the need for careful quantitative reasoning
rather than in explicit manipulation of symbols. Ideally, students can be motivated both by
the need to acquire quantitative thinking skills and by the demands of specific technical
challenges. In any case, the problems of uncovering mathematics at use in the workplace
and conveying those experiences to students are formidable challenges that must be
overcome. {The beginnings of one attempt at the graduate level in mathematics are
described by P.W. Davis 1991, a SIAM Report.}

.More simply, one can identify some specific skills students need at the pre-college
level through widely available licensing examinations for many trades and professians.
Students who aspire to become plumbers, electricians, or health care professionals, for
example, will be asked to find areas of plane figures and volumes nf common solids on
their licensing examinations. They will have to manipulate relationships involving rates and
slopes to pass those exams and to cope with their daily work.

Identifying these explicit challenges and conveying them to students can provide
motivation of a very concrete sort. Of course, an algebra curriculum needs to go far

beyond the need for formulas if it aims to develop flexible quantitative thinking skills.
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Can algebra be presentied as the key that unlocks those doors rather than the bar
that blocks them? Can algebra become the language of the relationships among
dimensions, areas, and volumes? Among rise, run, slope, and rate? Can it become the
language of success, opportunity, and access?

Mastery of the language of algebra also lays a foundation for mathematical
maturity. Familiarity with mathematical ideas enables an auto mechanic to manage
comfortably the business affairs of an independent garage, to make informed decisions
about loans and equipment depreciation. Good algebra skills set the stage.for a trained
secretary to undertake basic accounting and advance to a position as manager of a small
business. Those same skills enhance the computer literacy of an electronic technician with
the ability to implement spreadsheet calculations that speed and record a new procedure
for testing equipment.

Necessity builds ownership, and genuine appiications are evidence of the necessity
of algebra in the professional life of the technical work force. Students wili take ownership
if their algebra courses incorporate authentic applications like those they will encounter in
their professions. The challenge is identifying those applications and using them as

instructional vehicles.
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To Strengthen Technical Education Systemically

James G. Greenc
Stanford University and the Institute for Research on Learning

We should undertake to develop a system of educational deveiopment, research,
and practice that enables technical education to evolve progressively, increasing in its
productivity and value for American workers, businesses, and the society. Components of
such a system would include:

] Ongoing research, development, and practices of workplace activity to
understand and improve mathematical reasoning and understand'~3j that are
integral in productive work and continuing learning in technical Jccupations;

° Ongoing research, development, and practices of technical education in
mathematics to understand and improve preparation of students to become
productive workers and learners in technical occupations;

® 0Ongoing interaction among the communities concerned with technical work
and technical education with communities concerned with mathematics
education in pre-technical schooling, to understand and improve the inclusion
of mathematical learning activities that prepare students well for technical

education and work in the general curriculum.
Mathematical Reasoning, Understanding, and Learning in Work

The ways in which mathematical reasoning and understanding are invelved in
productive work are poorly understood, but scientific resources are available for developing
a strong knowledge base about these processes. As Richard Lesh pointed out in our
workshop discussions, most job analyses of the kind that are done currently take an
inappropriately limited view of mathematics that tends to recognize only standard symbolic
operations as mathematical reasoning. A more realistic view would recognize the need for
many workers to represent and reason about guantities and complex guantitative relations
in ways that are crucial for job success, but that often do not use standard forms of

mathematical representation in job settings.
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Researchers in cognitive science have developed methods to investigate and
characterize knowledge of procedures and concepts by individuals, and researchers in
social science have developed methods to investigate and characterize patterns of social
and individual activity in technical work. There is a strong potential for interdisciptinary
work that would merge these lines of scientific accomplishment in ways that would
provide important basic understanding of the requirements for imathematical understanding
and reasoning in successful job perfarmance.

Technologies for the support of technical work are often designed to off-load
cognitive activity, rather than to support individua! and social pracesses of reasoning,
understanding, and learning. Rather than trying to minimize cognitive involvement in work,
we could design information systems that would engage workers significantly and support
learning so that their knowledge, understanding, and abilities for reasoning in work would
grow productively in their work activities. Development of technologies designed for
learning by individuals and groups in their work and research about the individual and
social aspects of cognition and learning in work should be two aspects of a single activity,
in which better technologies are suggested by results of research, and research examines
the functioning of new technologies in order to support further improvements.

An important goal would be to organize technical work in ways that supported the
development of careers, building into the work of any job resources for learning that would
qualify successful workers for meaningful advancement. Such reorganization would need
supporting analyses not only of the cognitive and behavioral aspects of success in specific
jobs but of requirements for success in more advanced jobs, and how work experience can

provide the basis for performance and learning in those more advanced positions.
Meaningful Mathematics Curriculum for Technical Work

Studies of the processes of mathematical reasoning, understanding, and iearning in
work should be integral components of projects that also include development of
mathematics curriculum designed to prepare students for those kinds of reasoning,
understanding, and learning. These curriculum efforts would be focused particularly in
community colleges, technical training schools, and mathematics coursework in the last
year or two of high school for students who are not intending to enter 4-year colleges and

universities.
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The development of such curricula would be consistent with general efforts being
made in mathematics education reform. These efforts are developing environments and
teaching methods for meaningful mathematics learning, involving understanding of
mathematical concepts and methods both in contexts of mathematical inquiry and in
contexts of use of mathematics to reason and understand in other domains. It seems likely
that the mathematics curriculum for technical work might emphasize understanding of
mathematical ideas and methods as resources for reasoning in other domains. Development
of that curriculum requires progress in fundamental knowledge of what constitutes
generality of mathematical understanding. Such general understanding is different from
knowing how to manipuliate abstract symbols, but probably includes symbolic fluency. One
cruciat question is how mathematics can be 'earned so that its symbols can function
effectively as a language for formulating and solving problems in other domains with
understanding and communicating effectively about alternative conjectures and courses of

action.
Mathematical Preparation ‘or Technical Education and Work

Concerns about technical education should play a major role in shaping the general
curriculum in mathematics that students will have through most of their elementary and
secondary school education. Achieving the major general goal of reform efforts, to foster
practices of mathematical reasoning and sense-making, can contribute to the value of
mathematics education for all students, including those who eventually enter the technical
work force. For mathematics education to benefit all students, however, we need to
fundamentally restructure the social organization of mathematics learning away from its
present emphasis on selection of students who are qualified to continue in serious
mathematical study, to an activity in which all students are expected to succeed and are
supported in developing their abilities to participate in meaningful mathematical practices,
as Robert Moses emphasizes.

An Agenda for Developing a National Competence for Technical
Mathematics Education

Goals such as these will not be achieved by simply instituting a program. Instead,
we need to build a basic competence for the educational system to evolve in positive
directions. This competence should include structures of support for collaborative research,

development, and practice.
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The effort will require the participation of educational practitioners, educational
researchers, developers of curriculum and learning environments, and members of
professional communities that practice the kinds of technical work that students are
preparing for. Members of these communities have knowledge and abilities that could
support productive participation in these efforts, but a substantial investment would be
needed to support development of practices of collabaration in which the required multipie
resources can be utilized for the benefit of technical mathematics education.

Development of the research agenda for studying mathematical reasoning and
understanding in work can be accomplished by constructing collaborations of researchers
who study the social and individual aspects of cognition, along with mathematics
education researchers and members of technical professions, These studies would
investigate processes of social interaction and individual reasoning in work settings,
focusing on ways in which understanding of mathematical concepts and principles
functions in effective work activity. They also should include efforts to design resources to
support learning in technical work, including technologies that engage workers in
coliaborative reflection about their methods of recognizing and solving problems in their
work activity. ‘

Such studies need to be coupled with efforts to develop curriculum materials,
learning environments, and teaching practices that prepare students for the kinds of
individual and social activity that are important for success and advancement in technical
occupations. This will require the collaboration, in addition to the groups discussed above,
of educational practiticners in community colleges, technical education programs, and
secondary schools, along with professional mathematicians who will contribute insight into
significant aspects of the subject matter. Such collaborations need to provide for
engagement of all the participants in the various functions of the activity, including
analyses that contribute to research products as well as development of materials and

practices that contribute to the improvement of educational activities.
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Thoughts About Reshaping Algebra
to Serve the Evolving Needs of a Technical
Workforce

Richard Lesh
Educational Testing Service

At each grade leve! in school, and in each mathematics course that is offered, the
justification for what is taught and how it is taught is mainly based on conceptions {which
are often naive and misinformed)} about what is needed as preparation for the next
mathematics course in the program. Therefore, in a perverse and distorted way, the goals
of the entire mathematics curriculum are aimed to serve the fraction of 1 percent of the
students who never quit taking more courses {i.e., doctoral students in imathematics); and
this is the case in spite of the fact that potential Ph.D.'s in mathematics are as poorly
served as any other subgroup of students by the poor quality of mathematics that is
offered.

What would the algebra curriculum look like if an attempt actually was made to
teach mathematics so as to be useful to meet the needs of a technical work force? The
following fact is clear. If today's responses to this question are the same as they were {or
could have been) 10 years ago, then the chances are high that we are seriously naive and
misguided. Furthermore, what is taught may be far less significant than how it is taught.

During the past decade, a revolution has occurred in the core curriculum areas—
reading, writing, and mathematics. Powerful conceptual technologies are used on a daily
basis in fields ranging ftom the sciences to the arts and the humanities, and in professions
ranging from agriculture to business and engineering. and in employment positions ranging
from entry level to the highest levels of leadership; and these tools have radicaily
expanded the kinds of knowledge and abilities which are needed for success in a
technology-based society, and the kinds of problem-solving/decision-making situations
which are priorities to address in instruction and assessment. For example, when a
business manager uses a graphing calculator [or a graphics-based spreadsheet} to make
predictions about maximizing cost-benefit trends, these tools not only amplify the

manager’s conceptual and procedu al capabilities when dealing with old decision-making
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issues, they also enable the manager to create completely new types of business systems
which did not exist before the tools were available; and completely new types of problems
and issues arise as priorities to address.

As an appendix to this brief paper, | have attached a comparison of mechanistic and
organic views of mathematics, learning, and probiem solving. My claim is that, as long as
mathematics educators cling to the kind of mechanistic views that are described, it will do
little good to tinker V\-."ith the topics that are taught, or the problems that are presented, in
algebra instruction. However, shifting to organic views involves much more than simply
making a vow to do so. Just as at other levels of the mathematics curriculum, such a shift
will only be accomplishad effectively when reforms are based on a solid body of research
investigating the nature of students’ knowledge {e.g., in topic areas such as whole number
arithmetic, rational numbérs, or proportional reasoning). Yet, in the area of algebraic
knowledge and abilities, the research base is only beginning to develop.

In the absence of the preceding research base, it seems likely that the scenario that
plays itseif out will be much the same for algebra as it was for other levels and types of
mathematics instruction. That is, in the history of mathematics and science education
R&D, every decade or so, the pendulum of curriculum reform swings from emphasizing
behavioral objectives (BOs: strings of factual or procedural rules) to emphasizing process
objectives {POs: content & content-independent processes and strategies), or vice versa.
Also, periodically, some attention is given to affective objectives (AOs: feelings, valuzs).
Yet, in all of the preceding cases, cognitive objectives {COs: models for describing patterns
and regularities in the world) tend to be almost completely neglected. To a large extent, for
curricuium reform in algebra, the rhetoric that | hear about algebra instruction sounds like
little more than another swing from BOs to POs and AOs; and, if this is the case, then |
see little more chance of success this time than at similar times in the past.

Each time another curriculum reform is attempted without success, post hoc
assessments tend to notice that—in.the euphoria of developing exciting new instructional
materials {e.g., books, software)—two factors were once again neglected: t:acher
development and assessment.

Al the level of high school/coliege mathematics, as much as at any other level of

the curriculum, instructors notions about the nature of students’ knowledge is extremely
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naive; and the assessment instruments that are used reflect only narrow, shallow, and
biased views about what it means to understand the domain in question.

In the past, if a narrow conception of mathematical ability was cotrelated with a
more representative interpretation, testing specialists tended to treat modest {.5 to .6)
correlations as though they were sufficient—that is, sufficient for selecting
small-but-adequate numbers of students for access to scarce-but-adequate resources. But
today, even beyond concerns about fairness, national assessment priorities have changed.
At a national level, our foremost problem is not to screen talent; it is to identify and nurture
capable students. The pool of students receiving adequate preparation in mathematics is
no longer adequate; and far too many capable students are being "shut out™ or "turned
off" by textbooks, teaching, and tests which give excessive attention to views of
mathematics and problem solving which are fundamentally inconsistent with national
curriculum and assessment standards for school mathematics.

My own research on real-life problem solviﬁg suggests that most students, including
those who have been identified as unlikely to succeed, are able to invent more powerful
mathematical ideas than their teachers are trying to teach (Lesh & Lamon 1992). Yet these
abilities seldon: are recognized or rewarded because of the impoverished conceptions of
mathematical ability that are built into most textbooks, tests, and teaching—especially at
the level of introductory college-level mathematics.

How can a broader range of mathematically capable students be identified and
encouraged? Our research suggests that the key is to focus on the kind of models and
modeling processes that are needed when elementary mathematical systems are used to
describe, explain, manipulate, predict, or control everyday problem solving situations {Lesh,
Hoover, & Kelly 1993). On the other hand, our research also suggests that new students
are not likely to emerge if modeling is treated as another attempt to teach
content-independent Polya-style heuristics, strategies, and processes (POs), or if the
applications are used mainly as devices to increase motivation and interest (AOs).

As a result of the conference at which this brief paper was presented, there were
many reasons to be hopefu! about the chances of success for curriculum reform in algebra.
For exampie, mathematicians have always been well represented among those who are
willing to devote extraordinary amounts of time and energy to the improvement of

education for all students. On the other hand, the community of university-based
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mathematicians sometimes tend tc be a rather arrogant and impatient lot, and they are
often unwilling to question the validity of the implicit theories about fearning and problem
solving—or their prejudices about what should be taught and hew it should be taught in
schogls.

Simplistic soluticns and piecemeal approaches t0 curriculum reform will be no more
likely to succeed for algebra instruction than for any other level or strand of the
mathematics curriculum; and many basic questions remain unanswered which wi'l be
critical for long-term progress. For example, even in this brief paper, my comments have
touched on issues ranging from equity to technology to psychology and to competency in
real-life situations. Clearly, some immediate actions can be taken which are likely to vield
positive effects, But, at the same time that action-oriented initiatives are taken, similar
resources should be devoted to basic research as well as to the translation of practical
prablems into researchable issues, and to the translation ¢f reszarch results into practical

implications.
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Appendix
A Comparison of Mechanistic and Organic Views of Mathematics,
Learning, and Problem Solving

The Nature of Mathematics
Mechanistic Perspectives

The objectives of instruction are stated in this form: Given...the student will ... That
is, knowledge is described using a list of mechanistic condition-action rules {definitions, facts,
skills) some of which are higher order metacognitive rules for making decisions about: (1}
which lower level rules should be used in a particular situation, and {2} how lower level rules
should be stored and retrieved when needed.

Organic Perspectives

Knowledge is likened not to a machine but to a living organism. Many of the most
important cognitive objectives of mathematics instruction are descriptive or explanatory
systems (i.e., mathematical models) which are used to generate predictions, constructions, or
manipulations in real life problem solving situations ... or whose underlying patterns can be
explored for their own sakes.

According to the Mathematical Sciences Education Board’'s Reshaping School
Mathematics, two outdated assumptions are that: (i} mathematics is a fixed and unchanging
body of facts and procedures, and {ii) to do mathematics is to calculate answers to set
problems using a specific catalog of rehearsed techniques. (p. 4) As biology is a science of
living organisms and physics is a science of matter and energy, so mathematics is a science of
patterns. ... Facts, formulas, ana information have value only to the extent that they support
effective mathematical activity. (p. 12)

The Nature of Problem Solving
Mechanistic Perspectives

In general, preblem solving is described as getting from givens to goals when the path
/s not obvious. But, in mathematics classrooms, problem solving is generally restricted to
answering questions which are posed by others, within situations that are described by
others, to get from givens to goals which are specified by others, using strings of facts and

rules which are restricted in ways that are artificial and unrealistic. In this way, students’
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responses can be evaluated by making simple comparisons to the responses expected by the
authority (the tutor).
Organic Perspectives

Many of the most important aspects of reat-life problem solving involve developing
useful ways to "think about” the nature of givens, goals, and possible solution paths.
Solutions typically involve several "moceling cycles” in which descriptions, explanations, and
predictions are gradually refined and elabarated. Therefore, several levels and types of
responses are nearly always acceptable (depending on purposes and circumstances): and
students themselves must be able to judge the relative usefulness of alternative models.

Problems in textbooks and tests tend to emphasize the ability to create meanings to
explain symbolic descriptions; but real problems more often emphasize the ability to create
symbolic descriptions to explain (manipulate, predict, or control) meaningful situations. For
example, for a mountain climber, the main problem is to understand the terrain of a given
mountain or cliff; and, once the terrain is understood, the activity of getting from the bottom
to the top is simply a (strenuous, complex) exercise.

The Nature of Experts
Mechanistic Perspectives

Humans are characterized as information processors; and outstanding students
(teachers, experts} are those who flawlessly remember and execute factual and procedural
rules ... and who are clever at assembling these facts and rules in ritualized settings.
Organic Perspectives

Experts are people who have developed powerful models for construc’ing,
manipulating, and making sense of structurally interesting systems; and they are people who
are proficient at adapting, and extending, or refining their models to fit new situations.

The essence of an age of information is that many of the most important “things” that
influence peoples’ daily lives are communication systems, social systems, economic systems,
education systems, and other systems which are created by humans —as a direct result of
internal structural metaphors which structure the world at the same time they structure
humans’ interpretations of that world. Therefore: (i) there is no fixed and final state of

evolution, even in the context of elementary mathematical ideas, and (ii} reducing the
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definition of an expert to a single static list of condition-action rules is impossible {in principle)

... not just difficult (in practice}.
The Nature of Learning
Mechanistic Perspectives
Learning is viewed as a process of gradually adding,.deleting, and v.:ie—bugging
mechanistic condition—action rules (definitions, facts, or skilis).

Organic Perspectives

Humans are model builders, theory builders, and system builders; and the models that
are constructed develop along dimensions such as concrete-to-abstract, particular-to-general,
undifferentiated-to-refined, intuitive-to-analytic-to-axiomatic, situated-to-decontextualized, and
fragmented-to-integrated. Therefore, development often involves discontinuities and
conceptual reorganizations ... such as those which eccur when students go beyond thinking
WITH a given model to also think ABOUT it. Experts not only know more than novices, they
also know differently.

If the precise state of knowledge is known for an expert (F} and for a given novice [N),
then the difference between these two states is portrayed as the subtracted difference (E-N).
The Nature of Teaching
Mechanistic Perspectives

Teaching is considered to involve mainly: (i} demonstrating relevant facts, rules, skills,
and processes; {ii) monitoring activities in which students repeat and practice the preceding
items:; and {iii} correcting errors that occur.

Teaching focuses on providing carefully structured experiences for students ... where
they confront the need for mathematically significant models, and where responses involve
constructing, refining, integrating, or extending relevant models.

Organic Perspectives

According to the Mathematical Sciences Education Board's publication Everyone
Ceounts: The teaching of ma hematics is shifting from an authoritarian model based on
"transmission of knowledge™ to a student-centered practice featuring stimulation of learning.”
{p. b} ... Teachers should be catalysts who help students learn to think for themselves. They
should not act solely as trainers whose role is to show the "right way™ to solve problems. ...

The aim of education is to wean students from their teachers. (p. 40)
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Algebra for the Technical Workforce
of the 21st Century

Patrick Dale McCray
C.D. Searle & Company

Like everything else, the algebraic needs of the technical work force are continually
changing over time. What are the impediments to chang g the cusiiculum in algebra?
What are some of the algebraic concepts, educational issues, and possible approaches
which may prove useful in educating students in atgebra? This essay considers these ideas
from the perspective of the educational needs of students planning on entering the
technical work force in the 21st century.

Many people feel that U.S. students are already entering the technical work force
with inadequate preparation in mathematical problem solving, planning and optimizing, and
mathematical modeling. With the increasing mathematization of human affairs in the social,
cultural, commercial, and scientilic spheres we are currently experiencing and can expect
to continue, the preparation of people destined for the technical work force will only get
worse and not better if no attempts are made to reform instruction in mathematics in
general and algebra in particular. {See Glimm 1291; Friedman, Glimm, and Lavery 1992.}

This essay is based on the perspective of one individual's career in industry which
has spanned more than two decades. This career has consisted of a series of positions in
many appiied computer departments in a pharmaceutical company. The departments
ranged from scientific and statistical computer support, centralized corporate management
information systems, main frame system software, and back again. The work involved
provided exposure to many facets of the algebraic plight of people in the technical work
force and the application of mathematical sciences to the pharmaceutical industry, from

undergraduate student interns to doctoral level research scientists.
Impediments to Curricular Change

One of the biggest impediments to change within many businesses seems to be the
fact that the management structure usually does not perceive mathematics in general and
algebra in particular as being relevant to the day-to-day affairs of the company. This has

been one of the common understandings brought to light by the Mathematical Association
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of America's Committee on Mathematicians Outside Academia in a continuing series of
pane! sessions on mathematical life outside academia. Another impediment to change is
the low achievement level in algebra which 1s currently being experienced. It is hard to
improve to a high level of performance, if not seemingly impossible, if one has to start
essentially from zero.

Some of the managers of teciinical workers have come to realize this in lilinois and
have adopted strategies to cope. Instead of expecting technical workers to accurately
perfarm routine ratio and proportion calculations, they provide such workers with premixed
or known amounts of matenals and COLOR CODE ihem. The worker is not expected to be
colorblind. They are told to take the RED bottle and add its” contents to the YELLOW bottle
and pour the resulting solution into the BLUE container. How relevant do such people feel
algebra to be? If they do feel that algebra is important, they often cope by sending their
employees back to the community colleges or, warse yet, they cope by developihg their
own mathematics courses, entirely bypassing the educational system.

This is not an isolated phenomena. The widespread infusion of the microchip into
every and any device goes hand in hand with a consumerism which presents this
increasing automation and ease of use as highly desirable, if not necessary. Cars.
programmable VCRs. Photography: automatic exposure, automatic flash, just
point-and-shoot! Nobody has any need to carry out an aclual calculation anymore!

Yet again another impediment is the perceived lack of utility of algebra. One of the
problems continually being faced in industry is the confrontation between people with a
classical, schoal mathematics understanding of mathematics and the role of algebra and
practical, real-life business problems. Oftentimes the assumptions upon which the algebraic
methods are based cannot be justified in practice, with the et result that abstract methods
such as algebra are not being considered even when they are applicable, relevant, and
useful.

This does not bode wel! tar reforming the algebra currniculum because of widely held
beliefs that algebra has no real role to play in our society after secondary schooi. ““When
was the last time you had tec use the quadratic formula in everyday life?"" is a question that
1s oft repeated to justify the lack 0! utilny of alaebra. Even the microchips are not seen as

doing this kind of algebra for you.
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Fundamental Algebraic Concepts

What concepts in algebra help prepare students for entry into the technical work
force? A deeper and more comprehensive understanding of the basic concepts in algebra
would go a long way. For example, one of the situations which seems rather common is
failure to grasp the patterns in a situation. Each problem is seen as unique, needing to be
addressed with specific methods if at all. What is missing is the facility that algebra
provides, especially, for example, in ‘story problems,” for providing abstract models of
problem structure and solution. The impact in business is, given such an abstract
understanding of a business process, the ability to create general purpose software tools
which solve families of problems. When this process does occur it is perceived as a very
powerful and effective one. When it does not, there is a tremendous lost opportunity cost
which is paid by business.

Fundamental Educational Issues

Sometimes the connections between algebraic problem solving techniques at the
primary and secondary school level are lnst by students as they go through college,
possibly graduate scheol, especially by people with less, as opposed to more,
mathematics. In “story problems’ the idea of ‘symbols for unknown gquantities is
introduced. One of the reasons is to provide a methed, expressed in terms of the symbals,
which is easy to comprehend and use, Usually the "quantities’ are numerical. What
happens to many people in the technical work force is the loss of the idea of
‘representation’ and why it was (is, could be] so effective. Many a graduate level scientist
or statistician has failed to take advantage of the simplifications and power ‘let x = ...’
provides when complex {symbolic} quantities have to be manipulated. The advantage
apparently does not go away when mathematical technology is employed. On the contrary,
such technology becomes more effective the more its work is lessened through appropriate
use of algebraic concepts.

This fall off in retention of algebraic concepts as time goes by can be specifically
addressed in the K through graduate school mathematics curriculum by the use of ‘strands’
of algebraic ideas to pull these ideas together and infuse them with relevance and life as
the student progresses through the curriculum, to the point that algebraic modes of

thought are seen as natural and intuitive.
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Instructional Input From the Technical Work Force

Students and faculty at all levels from K through graduate schoal should be exposed
to problems actually being faced by industry. This can be done through a program of
student and faculty interns. In the schools, career counseling departments could be
charged with the mission to actively identify those employers in their area with
mathematical (algebraicl needs and facilitate the interaction between businesses and those
in the school responsible for curriculum development.

Mathematics depa "ments could request businesses to supply speakers for talks to
students and faculty. If those talks were focused on algebra and the role that mathematical
sciences play in technology, such as computer algebra systems, then there could be an
infusion of algebraic methods actually, currently being practiced into the curriculum
developrnent process. The real problem here is to take what is already happening locally on
a small scale in a sporadic way and incorparate it into the educational process of delivery

of algebraic ideas via systemic change.

Summary

How do algebra concepts prepare people far employment and lifelong learning in
mathematics? One invariant in modern life is the universal presence of change. In the 20ti
century, technological change has been increasing in an exponential fashion, no where
more so than with technology for machine computation.

By providing the reform of curriculum in algebra with input on current and next
generation mathematical sciences technology, students would be better prepared to step
into an industrial problem solving environment with algebraic tools and, more importantly,
algebraic power which are both relevant and effective in terms of facing this anticipated

demand for continual personal growth and change.
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Some Thoughts on Algebra for the Evolving
Work Force

Thomas A. Romberg and Mary Spence
University of Wisconsin-Madison

Everything would be perfect if...algebra made sense.—Amstel Beer TV
advertisement

In real life, | assure you, there is no such thing as algebra.—Fran Lebowitz,

December 1, 1993, Wisconsin State Journal

These sentiments—suggesting that algebra does not make sense or is just
something one does in school—which are so common in the public at large, are at the root
of the preblem of providing an appropriate algebra curriculum for the evolving work force in
this country. In this paper, the roots and role of this perception are addressed first, This is
followed with a suggestion for a shift in emphasis in what and how algebra in school
mathematics might be taught. The paper concludes with a description of a set of units in
the middle school designed to teach algebra based on this shift. Qur argument throughout
this paper is that all students, as members of tomorrow’s work force, need to see algebra

as important and useful, and to regard it as making sense.
School Algebra

The Algebra for the Twenty-First Century Conference, in August 1982, summarized
the current view of school algebra as a collection of isolated topics along with a set of
prescribed skills that are quickly forgotten and with a limited view of variable and function.
This view is undoubtedly based on how algebra is organized and taught in schools. For
example, Weller (1991} described a typical algebra class. The first 5 to 10 minutes of each
class usually began with the correction of the previous day’s work. The second segment of
the class, which lasted from 10 to 17 minutes, was devoted to the presentation of new
material. Example problems that had been placed on the chalkboard prior to the beginning
of schoo! were used throughout the day. After each class period, the answers were erased
so that the problems would not have to be rewritten for the next class. The remaining third
of the class was study time, during which students were to work on the day’s assiynment,

which was always to be completed by the following day. During this study period, the
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teacher would either look at individual students’ work and assist these who had questions
or would sit at her desk at the back of the room evaluating notebooks and/or calling
students to her desk to ask about late assignments.

Emphasis was placed upon determining the one correct answer, and the teacher
provided a step-by-step explanation of her thinking processes as exercises were computed.
Students who had skipped steps, but who arrived at the same answer as the teacher were
immediately corrected. Students were expected to use the prescribed computational
thinking process presented in the textbook. Practice problems were prototypes of those in
the assignment that students would be eventually completing. Students rarely raised
questions or sought explanations regarding computation.

The following student-teacher exchange illustrates the importance of following the
teacher’s process. After taking a test, a student asked about the wording of one of the test
questions, which he had answered incorrectly. The teacher’s reply was, "That’s not the
way you should be thinking about it, if you are thinking right.” Embarrassed by the
teacher’s comment, the student looked down at his test. No further comment was made
by the student, nor was further explanation suggested by the teacher. After the teacher's
remark, all hands went down.

The teacher had transferred authority to an unnamed "they.” The teacher was the
mediator between the source of knowledge and those who were expected to acquire the
prescribed information. The knowledge of tiie teacher was deliberately suppressed in favor
of that in the textbook. The study of algebraic content was justified on the ground that it
was necessary for college entrance. Transmission of abstract knowiedge appeared to be
the primary focus of rnathematics instruction. On several occasions, the teacher
acknowledged to students the fact that the information being presented would soon be
forgotten. The only justification for studying the material presented was, in fact, to pass
subsequent tests so that they might meet the requirements of college entrance
examinations., Thus, for both the teacher and the student, the purpose of the course was
not to learn the big ideas of algebra or provide students with employable skills. Its sole
purpcse was access to further courses and to college.

The textbook was the primary factor in determining the curriculum. Algebra was
presented as a process of learning methods needed to solve standard problems. The

teacher relied on surface features of algebra and taught manipulation skills and the routine
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application of standard algorithmic techniques. This teacher’s perspective of algebra fits
the dualistic conception of mathematics in that an external authority, in the form of the
_textbook, was the source of truth, and algebra consisted of a collection of true
propositions apart from the context in which they were developed.

Wenger {1987) found that studen'gs could use the various techniques they had
studied but when problems were presented out of context and the students had to select,
as well as apply the methods of solving them, they had great difficulty. Students
sometimes perform the manipulations correctly, but they make "strategy errors,” which are
poor choices of what to do next (Wenger 1987). This observation suggests that students’
difficulties result not so much from the content of their mathematical knowledge base, but
from its organization. The ways in which knowledge is organized, accessed, and used are
important determinants of intellectual performance. The packaging of subject matter into
single chunks in a one-rule-per-section format may leave students with the impression that
solutions should be straightforward, requiring only the use of one rule or procedure.

The following assumptions stem from Wenger's work (1987} with high school and
college students:

L Students learned algebra primarily from examples and practice tasks

found in textbooks. They did not usually learn by understanding the
explanations of procedures and using tiose explanations. Rathe:, they
figured out what the procedures were about by working through
them.

° An important force driving student behavior was the need to make
sense of things by creating simple, straightforward procedures that
work. As students worked problems, they invented rules for the
procedures that seemed to fit the expected answers. Often those
rules were as simple as possible and were incorrect.

. The rules and procedures that students invented became part of their

problem-solving approach. Students often continued to use one of
these inferred procedures until encountering a task that revealed it to
be incorrect (p. 221).
An instructional consequence stemming from these assumptions is that if a list of textbook

tasks can be completed successfully with the right answers using a sequence of
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procedures inferred by the student, then the correctness or the validity of the strategy is
confirmed and the student believes he or she "understands™ the algebraic topic,

The underlying basis for these descriptions of traditional instruction in algebra rest
with common beliefs about mathematics. Many nonmathematicians such as sociologists,
psychologists, school administrators, and even curriculum generalists see mathematics as a
static, bounded discipline. Indeed, according to Edward Barbeau {1989}, "Most of the
population perceive mat!'lematics as a fixed body of knowledge long set into final form. Its
subject matter is the manipulation of numbers and the proving of geometrical deductions.
It is a cold and austere discipline which provides no scope for judgment or creati\}ity" {p.
1). These views reflect an absolutist perspective about mathematics and are undoubtedly a
reflection of the mathematics studied in school rather than an insight into the discipline
itself.

During the past two decades, there has been a growing awareness of the need to
represent hetter what mathematics is about, to illustrate what mathematicians do, and to
attempt to popularize the discipline. This is not easy because the subject has many facets.
One can define mathematics "as a language, as a particular kind of logical structure, as a
body of knowledge abhout numbers and space, as a series of methods for deriving
conclusions, as the essence of our knowledge of the physical world, or as an amusing
intellectual activity" (Kline 1962, p. 2). Understanding these variations is important
because different features have been emphasized in school mathematics programs at
different times and by different authors. Furthermare, proponents of the current reform
movement argue for a particular perspective that is different from that held by diverse
individuals, including the perspective of many (if not most] working mathematicians
(Wheeler 1991).

In summary, the roots for the current perspectives about algebra are from an
absolutist perspective about mathematics in general—"a body of truth far removed from
the affairs and values of humanity" (Romberg 1992, p. 7561). According to this view, to
know algebra is to master a large collection of concepis and procedures. In addition, there
is a second problem with this perspective in American schools—the idea that the
successful completion of algehra courses gains one access to the future {e.g., college
entrance, programs, jobs) (Secada, in press). Thus, by making the mastery of a collection

of poorly understood procedures the goal of such course taking, the courses function as
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filters for denying access to large numbers of students. The fact is that the mathematics
course, algebra, creates a major barrier to current reform efforts. Students often find
algebra one of the most alienating parts of their school curriculum. Based on whether they
are permitted to enter this course or on their experiences with it, they come to view
themselves as having little potential for further involvement with mathematics {Wisconsin
Center for Educational Research 1923).

A Shift in Emphasis

A growing number of philosophers of mathematics {e.g.., Davis & Hersh 1981;
Kitcher 1988; Lakatos 1976; Tymoczko 1986) argue that mathematics is "fallible,
changing, and like any other body of knowledge, the product of human inventiveness"
(Ernest 1991, p. xi). Mathematics must be considered as a process of inquiry and coming
to know, a continually expanding field of human creation and invention, not a finishaed
product. Such a dynamic view of mathematics has powerful educational consequences.
The aims of teaching mathematics heed to include the empowerment of learners to create
their own mathematical knowledge; mathematics can be l;eshaped, at least in school, to
give all groups more access to its concepts and to the wealth and power its knowledge
brings; and the social contexts of the uses and practices of mathematics can no longer be
legitimately pushed aside —the implicit values of mathematics need to be squarely faced.
When mathematics is seen in this way, it needs to be studied in living contexts that are
meaningful and relevant to the learners, including their languages, cultures, and everyday
lives, as well as their school-based experiences. ‘

This philosophy of mathematics has been labeled by Ernest as "social
constructivism" which, he argues, is based on three premises:

L] The basis of mathematical knowledge is linguistic knowledge, conventions,

and rules, and language is a social construction.

] Interpersonal social processes are required to turn an individual’s subjective
mathematical knowledge, after publication, into accepted objective
mathematical knowledge.

. Objectivity itself will be understood to be social. (p. 42)

In particular, from this perspective, views of the nature of algebra are changing.

An important factor underlying current changes in the view of the algebra curriculum is the

move from an emphasis on manipulative skills to an emphasis on conceptual understanding
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and problem solving. This is 2 move from doing algebra to using algebra. One reason for
this is the introduction into the classroom of increasingly more powerful calculators and
computers that are changing what students are able to do in this subject.

Attention needs to be given not only to what is being represented in terms of
underlying structures and relationships in problems (the semantic aspects of algebra) but
also to how these are represanted {the syntactic aspects of algebra). An important feature
of algebraic thinking is the development of flexibility with regard to mode of representat.on.
Students need to be able to recognize different forms of representation, know what
advantages each has to offer, and be able to translate freely among them. Both the
involvement of technology, and research evidence as to the kinds of procedures that
students use naturally, point to a greater use of recursive techniques and a possible
abandoning of some of the deductive procedures that form a farge part of the current
algebra curriculum (Booth 1989). The current increase in attention on graphing and
functions and the corresponding decrease in attention on factoring, powers, and roots are
continuations of a gradual process that has been developing for some time.

Shifting the emphases in school algebra raises some difficult epistemological and
philosophical questions. If it is a generalization of arithmetic, then its behavior is tied to the
properties of quantitative arithmeti'c. However, if it is a forerunner of abstract algebra, it is
better understood as being determined by a set of rules for the manipulation of the
symbols in the system in which it is written. School algebra ariginates in the boundary
between formalized arithmetical algebra and the development of arbitrary afgebraic
systems. As a consequence, it presents learners with validation problems. Do you
determine the truth of an algebraic statement, or justify the steps of an algebraic
transformation by the appeal to the behavior of numbers, ar according to a set of formal
rules? Wheeler {1989) suggests it is not surprising that so many high schoal students and
teachers are confused and uncertain about the reasons underlying the procedures in school
algebra (Wheeler 1989).

Mathematics' educators should be involved in exploration of existing school algebra
and serious examination of plausible aiternatives. We need to know more about the role of
routines in algebra, whether the practice of routines should follow or accompany
conceptual understanding, what students need to know in order to manage and direct

algarithmic behcvior, to what extent algebraic behavior can be deduced from arithmetic or
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from geometry, how to abstract patterns, how to generalize and how to justify
generalizations, and how to apply algebra to problem situations.

"The winds of change are whipping around the algebra curriculum for a

variety of reasons. Some concerns are generated by research findings about

what people do and do not learn well. A curriculum that has been with us for

quite some time is in & state of flux and under close examination."

{Ed Silver, quoted in Wenger 1987, p. 244

Kaput {e-mail, April 6, 1993) identifies the following as contexts within which
algebra reform is situated:

'Y Understanding the nature of the domain of algebra;

L] Understanding algebraic reasoning and how it is different from other

forms of reasoning;

L] Understanding how algebra is best learned, by whom, with what tools and

resources, and at what developmental levels; and

L Understanding what kinds of classrooms foster understanding and

competence, what are teacher-preparation implications, and how to
bridge the gap between middie school and high school.

The NCTM Standards (1289) emphasize the importance of models, data, graphs,
and other mathematical representations to facilitate the learning of concepts and structure
in algebra. Students should understand the concepts of variable, expression, and eguation,
and should explore the interrelationships between number patterns and tables, graphs,
verbal rules, and equations. They should informally investigate inegualities and nonlinear
equations and develop confidence in solving linear equations by both formal and informal
methods. They should be able to use algebraic methods to solve a variety of real-world and
mathematical problerr.'ns. The goals articulated in the Standards stress two aspects of
algebra: algebra as a language or structure and the concept of function.

Kaput {cited in Wenger 1987) argues that it is a serious error to treat algebra as if it
were a self-contained domain. The basic problem with learning algebra is that it is a
language without much semantic content. The semantic content that it does have has
developed among experts through their manipulation of sophisticated algebraic expressions
over long perieds of time. Therefore, much of its substantive structure has a sort of

invented semantic content. In Kaput's view, the primary source of meaning for algebraic
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expression_s is in their capturing of numerical patterns {rum arithmetic, from science, or
from anywhere you find them.

For students, algebra should be a way to express real-world phenomena in
mathematical language. Their experience of algebra should include many and varied
problems from the real world so they wili gain understanding of the power and usefulness
of algebraic notations and conventions. Algebra should be an extension of the study of
patterns, functions, and ratios. There should be an emphasis on understanding concepts in
realistic contexts as opposed t¢ manipulating symbols and memorizing procedures void of
any meaning. Students should develop an understanding of variables, expression,
equations, and properties through the use of tables, graphs, and physical models.
Manipulating expressions can be introduced as the need arises in problem contexts.
Although by the end of eighth grade, students should be able to formally solve linear
equations, they should h.ave arrived at this method only after using concrete and informal
technigues. In addition, they should have had a wide range of experiences with inequalities
and nenlinear equations.

Algebra in a New Curriculum

The following example comes from Mathematics in Context (Romberg et al., in
press), a middle school curriculum project funded by the National Science Foundation and
being developed jointly by the National Center for Research in Mathematical Sciences
Education at the University of Wisconsin-Madison and the Freudenthal Institute at the
University of Utrecht.

The belief underlying the Mathernatics in Context curriculum is that mathematics is
a process of inguiry and coming to know that includes creating and inventing. In
presenting mathematics as a human activity, the concept of "meaning” is central.
Especially important is the question of how to involve students so that problems will have
a sense of reality for them. In what Treffers (1987} calls a "domain theory of realistic
mathematics education,” realistic refers to reality in the sense of what is real for students.
This does not necessarily imply real life situations, but may also inciude fantasy and
mathematical objects. Thus, mathematics is viewed as a human activity that starts in a
reality that makes sense to students.

The idea of "mathematizing" {Freudenthal 1983) is central to this view of

mathematics education. According to Freudenthal, mathematizing is the process by which
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mathematicians streamline or simplify reality to meet their needs and preferences.
Mathematizing involves representing relationships within a complex situation in such a way
as to make it possible to put them into a quantitative relationship with each other. The
mathematician must first decide which variables and relationships between variables are
important and which do not matter when confronting a complex problem situation. Then,
a mathematical model is made, numbers reassigned to variables, and numerical procedures
used to make predictions. Finally, the results are examined. Mathematizing is an organizing
activity. It includes mathematical content, expression, and more intuitive lived experience,
expressed in everyday language. Mathematics is seen as a process, as a "doing” discipline,
as a practical skill that involves both art and techniques.

Algebra in Mathematics in Context (Romberg et al., in press) as diagrammed in
figure 1 reflects three important ideas: regularity, restriction, and process. The titles of the
algebra units are placed in the diagram according to which of these ideas they are designed

to develop.

Figure 1—Logic of the algebra strand (Roodhardt as cited in Romberg et al., in press)
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Regularity or pattern involves looking at and expressing relations among two or
more quantities. This is a representation of quantit.ative information, and then, reasoning
about this information. Key mathematica! ideas required to reason about regularities are the
core concepts of beginning algebra: variables, functions, relations, equations, and
inequalities, This involves the mathematical process of generalizing or of expressing
generality. Patterns and regularity are part of the process of generalizing. Generalizing is
characterized by looking for similarities, analogies, and classifying.

Restrictions involve restrictions on the domain of a function and comparisons that
function as constraints on equations and inequalities. It involves maximizing and minimizing
a quantity while at the same time making sure that constraints on other quantities are
satisfied. Limiting interpretations and determining validity are part of this theme. Equations
describe the constraints between quantities in situations.

The traditional approach to the mathematics of process aor change is calculus. The
changing system is modeled by a special equation that describes the relations between the
rates of change of different variables. Process includes this, but it also deals with
recognizing, describing, and using functional relationships; with recognizing variation in
situations. Commonly cccurring types of variation in relationships between variables
including linear, reciprocal, exponential, and quadratic are explored and related to graphical,
symbolic, and numeric representations of these types of relationshibs.

The belief underlying the algebra strand in Mathematics in Cantext, then, is that
algebra is a tool for making sense of the world—for making predictions and for making
inferences about things that you cannot measure or count. Algebra is manipulation with
substitutes temporally free from the original meanings, but whose meanings are
recoverable, whenaver necessary. The substitutes are the symbe!ls Among them are
symbols for number, variable, actions, and relations.

Figure 2 depicts the process of building meaning for working with sy:nbols. The
symbolization cycle is one of the important ideas in algebra and in topics that use algebra.
The chosen world can be part of reality, but it can also be fantasy or a mathematical
abstraction. The emphasis placed on the process is in order to prevent early automization
as a substitute for student reasoning. The thoughtful use of an algorithm for special
purposes without memorizing the aigorithm is an important and essential step toward

learning formal algebraic cperations.
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Figure 2 —Symbalization cycle (Roodhardt as cited in Romberg et al., in press)
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Lins (1990 states that the belief that algebraic thinking can only happen in the
context of algebraic symbolism is misleading. He distinguishes between two fields of
reference: the numerical and the analogical. The numerical frame of reference mieans that
only the arithmetical environment is relevant to the process of manipulating or exploring a
situation. The analogical frame of reference means that a situation is manipulated or
explored by manipulating features of the situation itself. An example of an analogical frame
of reference is when a situation or algebraic problem is modeled with a geometrical shape
or pattern such as an array of dots.

This analogical frame of reference has been called referential algebra. Referential
algebra as described by Kaput (e-mail, April 6, 1993) is the algebra of quantitative
modeling; of functions and relations that refer to elements and relations in realistic
situations. As a conceptual structure, it has its foundation in knowledge of quantification
and quantities. Formal algebra is the algebra of symbolic systems, of formal elements,
whose foundation may be in quantitative activity and situations, but where attention is or.
the form of the representation itself. not on what it might be representing.

Kaput uses the metaphor of a person looking through a lens at a shape to
distinguish formal algebra from referential algebra. Think of a person looking through a tall
vertical lens to an amorphous, vertically elongated blob with Aristotelian sight-lines passing
through configurations on the lens to configurations of the blob. The lens stands for a
symbaol system, and the blob stands for a situation or referent. Symbols can be used

transparently to reason about the situation by using knowledge of the situation. However,
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you can also think of the sight-lines being generated and wiggled by their ends in the blob,
with the intersections on the lens being derivative of the reasoning that is tied to the blob.
Here, there is a semantically guided two-way interaction between symbols and situation.
The main source of guidance and inference again is in your knowledge of the situation. On
the other hand, you could truncate the sight-lines at the lens and do syntactically guided
maneuvers of the symbol system, treating the lens as opaque. This truncated activity is
analogous to formal algebraic reasoning. Mason (1992) refers 1o the most productive
reasoning as "shifts of attention™ between the symbolic lens and the situation. The
wiggling of the sight-lines is controiled sometimes by the configuration of the lens,
sometimes by those in the situation-blob, and sometimes by the comparative shifting
between the two. Supports or constraints for your reasoning come from the symbol
system, from the field of reference, or from an interaction between the twc [Kaput, e-mail,
April 6, 1993). '

According to Kaput, the standard, rules-based algebraic symbolic lens has its
syntactic properties inherited from the quantitative properties of the standard number
system. Configurations on a character-string lens are constructed by acts of abstraction or
generalization, or both, from action on the reference field of numbers. This is algebra as
generalized arithmetic. It is a limited form of algebra, and it is not very helpful as a
resource for reasoning, especially about general quantitative relationships {Lee & Wheeler,
1989}, One of the strengths of a referential, or modeling, approach is that it helps to
remove the ambiguity in the two levels of structure between that of objects such as
functions and operations on them. You can concentrate first on building functions as
expressions of quantitative patterns before going on to manipulate them for purpose of
comparison or combination (Kaput, e-mail, April 6, 1993).

To illustrate this approach, "Patterns and Triangles™ is a unit in the algebra strand in
Mathematics in Context that is concerned with regularity. This is alyebra of quantitative
modeling or referential algebra. Referential algebra contains models, descriptions, concepts,
procedures, and strategies that refer to concrete or archetypical situations. Models and
strategies refer to the situation in problems.

The algebra in this unit is classified in a typical algebra textbook under the topic of
sequence and series. The way that the algebra is presented here, however, is not as it is

usually introduced in beginning algebra textbooks. This algebra fits the description of
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referential algebra. The big idea underlying the unit is regularity. A situaticn is manipulated
or explored by manipulating features of the situation itself. Attention is on the forms of
representation and on what is being represented. The focus of the unit is on the
representation of algebraic expressions and functions, including symbolic, numeric, and
graphical representations.

Regularity is situated in the context of patterns and geometrical shapes and in
seguences of numbers. Pattern is a metaphor that is used for regularity in numbers.
Special attention is paid to triangular numbers as regularity becomes situated in triangular
numbers. Mathematical content includes establishing patterns in data, creating both linear
and quadratic formulas, dynamics in patterns, functiohs, and series and seguences.

Through recursive techniques, the use of tables, and visually by tessellating black
and white tiles in equilateral triangles, students discover that the sum of the odd integers,
{2k-1) =1+ 3 + 5 + ...+ {2n-1) = n% "n" is a row number in the referent triangle.
Triangles become symbolic shapes with the same pattern. Students learn that if they
square the row number "n" of the triangle, they will get the total number of black and
white tiles. This formula is written as S, = n? for the sum of the total number of tiles.

Students also build an understanding of the sum of integers, k = 1 + 2 + 3 +
...+ n = n(n-1)/2 from exploring patterns of black and white tiles. The fermulas S, =
1/2n* + 1/2n and S,, = 1/2n? - 1/2n are derived visually. S, stands for the sum of the
black tiles, and S, stands for the sum of the white tiles. The referent or situation
{elongated blob) for the symbolic expression in the unit is a particular grouping and splitting

of a rhomkus {diamond).

189
<4 "4(\
L (\!



AS
i

Figure 3 —Referent for formulas in "Patterns and Triangles” {Romberg et al., in press)
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Students are able to use this referem throughout the rest of the unit to give
meaning to formulas used to solve a variety of problems. Here the representation becomes
an gbject of study itself. It is a source of new ahstracticns that serve as useful models of

patterns in concrete situations {Fey 1990},

Conclusion

An important reason that so many students and teachers have difficuity with this
subject is the approach taken to the subject. As it is currently crganized and taught,
school algebra is a barrier that many pecple are not able to overceme. Therefore, a critical
examination of the content, place, and purpose of school algebra is long overdue. The
shift in emphasis and the approach we have proposed here should provide all students with
a better understanding of the important and usefu! mathematical ideas of algebra. Thus, it

should provide the mathematical foundation for the work force of tomorrow.
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Algebra: A Vision for the Future

Susan S. Wood
J. Sargeant Reynolds Community College

As currently taught, algebra can be characterized as a certain body of mathematics,
largely skill-based, with which students must be moderately successful to move on to
mathematical or other endeavors. The algebra taught in middle and secondary schools and
in developmental programs at many community colleges is largely a set of skills.
Frequently, algebra courses are organized around sets of skills clustered by topic, such as
factoring, linear eguations, polynomials, rational expressions, and radicals. These skills are
learned temporarily and hence are forgot*an easily because they are taught as an end in
themselves. Such skills must be relearned when needed in higher level mathematics
courses such as precalculus, calculus, or discrete mathematics or for applications such as
chemistry, physics, or economics.

1 propose instead that algebra be taught as a way of thinking, a conceptual and
symbolic framework which supports exploratory thinking in mathematics. A student
challenged with an interesting and relevant problem situation analyzes it initially using
mathematics within his or her current knowledge base. Appropriate algebra, that which will
enhance the understanding, exploration, and solution of the problem, is introduced at the
point of need to enable deeper analysis. Symbolic manipulation such as simplifying
expressions, laws of exponents, factoring, and the like, should be taught only as necessary
and when fitting the context of the interesting problem setting. Skills will be remembered
as they are connected to the context in which they are learned. The algebra underpinning
provides the vehicle to move a problem soluw.on to deeper levels and better results.

The traditional secondary school or lower division collegiate algebra classroom of
the present, with an omniscient lecturer at the helm and too many unsuccessful students,
shows few similarities to a new vision for the study of algebra. First, no separate algebra
codrse will be offered. Rather, algebra will be integratad into a context-based
"mathematics-plus” course where algebra is presented as an underpinning to an
applications-driven mathematics curriculum. The teacher will becorne facilitator and guide,

directing the students as they together explore, conjecture, hypothesize, react, test, and
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conclude, Students will iearn actively in collaborative settings, with continual development
of each student's ability to plan, organize, speak, listen, and write. The curriculum must be
responsive to the ever-changing needs of the workplace, to new information about the
learning and teaching process, to new technologies, and to the community the educational
system serves. The natura!l institution to handie the teaching of algebra to prepare for an
ever-changing technical work force is the'2-year college, with its diversity of programs and
strong connections to business and industry. Assessment, conducted by students
themselves as well as educators, is ongoing and monitors student learning, the relevance
of the curriculum, and the quality of pedagogy.

The teaching of algebra should focus on several major ideas, among them equation-
solving {in an appropriate contextl. Equation-solving is a common thread running through
our skill-based courses as an end in itself, but can truly illustrate the power of mathematics
to find answers to meaningful questions. One or more equations containing one or more
variables resuiting from data anaiysis or some other situation creates a challenge for the
solver. Technology support and pencil-and-paper techniques enable varied means of finding
exact or approximate solutions including numeric, graphical, and symbolic methods.
Another important concept which should remain in a renewed algebra curriculum is the
cancept of function. Important function ideas include the study of relationships between
and among variables, the study of the effects of varying parameters on famities of
functions, and the use of functions to enable students to observe patterns and model
physical phenomena.

The SCANS Report, Learning a Living, calls for full implementation of the teaching
of "workplace know-how" from kindergarten through college by the year 2000, This know-
how encompasses such skills as the ability to learn, reason, think creatively, make
decisions, and solve problems. Competencies such as collecting, interpreting, and
evaluating data, using appropriate technology, and working etfectively in a team are
inciuded. The algebra curriculum can be a strong advocate for encouraging SCANS know-
how and a powerful mechanism for its teaching. Various initiatives such as Tech Prep,
JTPA, and Perkins programs enable the tailoring and coordination of educational programs
to meet the needs of the workplace.

Changing the nation’s understanding of the role of algebra in its educational

prcgrams will not be easy. As the NCTM Standards have influenced widely courses and

194



0y

(%)

ERIC

Aruitoxt provided by ERic

@@S

curricula, so must the larger educational community understand a redefinition of what it
means to study algebra. Educators, administrators, parents, students, and citizens must be
convinced that the certificaticn formerly offered by completing an algebra course is being
replaced by increased access to a strong, sound curriculum producing successful students.
Concerns about teacher retraining and professional development will attempt to roadblock
reform in the algebra curriculum. The development and dissemination of high-quality
instructional materials which model effective curriculum and pedagogy are critical to
assisting schools and colleges in their efforts to make changes. Many other issues, equity
and diversity among them, surround appropriate algebra for the 21st century. Essential is
the elimination of courses in algebra as screening devices for students wishing to pursue a
variety of fields or other mathematics-related topics such as statistics. Retention of
students from underrepresented groups and students with varying learning styles is a
must.

A new draft document, the "Curriculum and Pedagogy Reform for Two-year Colle-ge
and Lower Division Mathematics Standards,” under preparation by the American
Mathematical Association of Two-Year Colleges, calls for the natural and routine
incorporation of technology into the learning and teaching of mathematics. In mathematics
in general and algebra in particular, students should be able to choose the appropriate
technology, use it with confidence, and understand the nature of the results obtained.
However, this same wording summarizes my thoughts about the direction which algebra
should take: ALGEBRA, with a revitalized definition, should be incorporated naturally and
routinely into the student’s mathematics experience, seamlessly integrated and connected
with other mathematics and mathematics-related topics which are learned in context

through an active, collaborative approach.
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Report of Working Group 4

Joseph Gallian
University of Minnesota at Duluth

Although many issues were discussed, our group came to conclusions on only a
handful of them.
Algebra Across the Grades

There should be more dialog between K-12 educators and 13-16 educators. We

discussed several benefits from such a dialog:

. It might be possible te lay the basis in high school for some important ideas
from linear and abstract algebra. These ideas, including various uses of
proof and explanation, reasoning about binary operations, and working with
symbol systems, are important in the algebra experience of all students, not
just those who are college bound. With coliege-bound students, it might
even be possible to introduce some of the actual topics from advanced
algebra (especially from linear algebra).

L New ways must be found to connect with and engage students in linear and
abstract algebra courses, The algebra experiences of university students
should build on and be informed by the various reforms and changes that are
taking place at the secondary level. These include mixing deduction with
experiment, using cooperative teams of learners, developing project-based
activities, and incorporating technology into courses.

L Part of the dialog between K-12 and 13-16 educators might be a search for
algebraic themes that could run throughout a student’s algebra experience.

Technology in College Courses

Educators ought to consider the use of technology in linear and abstract algebra
courses. We discussed several issues that must be addressed in order to make this
happen. Two important ones are:

L Faculty need to devise effective uses for technology in their courses. There
are computational environments that seem well suited for use in linear and

abstract algebra (MATLAB, ISETL, and systems like Geometer’s Sketchpad,
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Maple, and Mathematica, for example). There is also a great deal that is
known about the uses of technology for learning mathematics at the
pre-college level, and some of this can be transported to the university
setting. But there are challenges in teaching linear and abstract algebra with
technology, challenges that ca: for new ideas and solutions. Innovative work
is going on at some colleges and universities, but significant research is
needed to find effective ways to use technology to help students learn
algebra.

If technology is used in a course it ought to be integrated rather than
appended. Integration of technology into algebra requires a significant
re-thinking of the algebra curriculum, Different uses of technology will lead to
different kinds of curricula. For example, a linear algebra course that uses
MATLAB to explore applications of matrix algebra to topics in engineering is
likely to be quite different than a course that asks students to use, say,

Maple to write programs that test vectors for linear independence.

The Role of Applications

It is preferable to integrate applications into a course rather than offer separate

applied courses. Applications in elementary courses should not be so over-powering as to

detract from the mathematics. Applications can be used for motivation or to enhance

understanding. The applications can be from practical situations or to other parts of

mathematics.

Abstraction and Proof

For many students there is a barrier between the courses that stress mechanical

skills and the courses that emphasize zostraction and proof.

What can we do to remove this barrier? Several strategies were discussed:

Abstractions should come only after concrete examples have been

introduced. Some of these examples might come from previous courses and
experiences; others might be developed within the linear or abstract algebra
course itself. In order for students to see the utility of abstraction in algebra,

they need to have a concrete basis from which abstractions can be made.
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] Linear algebra is a good course for developing some proof techniques. Most
proofs cf results in elementary linear algebra are transparent and constructive
enough so that students can build several important skills.

] Students should use proof as a research technique throughout their
mathematics experiences. The de-emphasis on two-column proof in
geometry and the reduced emphasis of proof in calculus and other
elementary courses should not signal a completely proof-free experience for
students before they get to linear algebra. Activities should be developed in
lower level courses that illustrate the value of proof as a mechanism for

communicating, establishing, and even discovering new results.
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Some Thoughts on Teaching
Undergraduate Algebra

William D. Blair
Northern lllinois University

Abstract Algebra and Introductory Analysis are usually the first undergraduate
courses where students must come to grips with the idea of proof. The students may have
some familiarity with the abstract concepts of vector space and linear transformation, and
they may have had to write out a few short proofs, but they are not usually prepared for
the depth of these courses, where almost everything is proved carefully, and where the
students are expected to devise their own proofs. In the abstract algebra course the
students are not only learning the subject matter but also the whole culture of pure
mathematics. Not only must the students understand the definitions and theorems, they
must learn to construct their own examples and counterexamples. There was considerable
discussion at the Colloguium about the "wall” students encounter when they face the
transition from the lower division courses to the abstract upper division courses.

Learning and teaching abstract algebra is labor intensive. There is no way around
this. The only way the students will learn to write proofs is by trying to do so. The
students’ attempts must be read carefully, critiqued, and then returned along with helpful
comments and suggestions. As anyone who has graded student exercises knows, this is
the course of the long, wrong argument. Whenever | teach this course 1 assign quite a few
exercises every week, grade them, and return them, usually at the next class meeting.
The exercise grade is a significant part of the final course grade. The students are
encouraged to work together in groups, but this is not always feasible for some students.
| suggest that they think about the exercises before meeting with their group, and | require
them to write up their own solutions rather than appointing a scribe for the group and
having everyone else copy the scribe’s work. One thing that | have found to be a good
investment of time is allowing the students to rewrite their first few exercise sets after
they get their papers back with my comments. By doing this a student can recover up to
one half of the points lost on the first try. This successive approximation method see.ns to

help students improve faster than any other technique I've tried. Once students begin to
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understand what constitutes proof, the papers become much easier to read. This method
requires that the comments on the students’ papers be extensive. Another advantage
gained from having assigned lots of work at the beginning of the term is that students tend
to allocate the same time intervals each week for studying each of their courses. Staking
an early claim to a major part of the students’ study time allots to the algebra course the
time it deserves and needs. Even if you are fortunate enough to have a paper grader
assigned to your course | would encourage you to grade some of the students’ work
yourself—it's a great eye-opener.

Applications and historical comments are often suggested as important for
motivation. It has been my experience that students almost always enjoy historical or
biographical comments. Recently, there has been a tendency to yield to demands of
"relevancy,” and to include applications in the course. It is my feeling that such inclusions
often tend to be superficial. In order to make room for the inclusion of applications, some
important mathematical concepts have to be sacrificed. It is clear that one must have
substantial experience with abstract algebra befoie any genuine applications can be
treated, For this reason, | feel that the most honest introduction concentrates on the
algebra. 1 prefer to motivate the subject with concrete problems from‘ areas of mathematics
that the students have previously encountered, namely, the integers and polynomials over
the real numbers. Geometric considerations, such as symmetry groups and the
impossibility of trisecting the angle or duplicating the cube with straightedge and compass,
offer real motivaticn. In the end, the ideas of abstract algebra are beautiful in their own
right, and once the students begin to have success in the course, the subject’s intrinsic
attractiveness is more han ample motivation. The trick is to supply the help necessary for
the student to experience some success early on. it is hard work for the student and the
teacher, but it is worth the effort.

A technigue, with which one of my colleagues has had success, is to give a five-
minute quiz at the end of every class. The quiz always cansists of a question on that day’s
material, usually an easy question, and a second part in which the student asks the
instructor a question. After an initial shakedown period during which the class learns that
questions of the sort "will this be on the test’” are not what the exercise is all about,
these student questions become an assessment device by which the instructor learns

about the class’s progress and is able to make daily adiustments as needed.
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Finally, | would like to mention an idea that | believe is worth trying. In addition to
the regular three credit-hour per semester abstract algebra course, | would like to see some
optional one credit-hour modules or seminars developed. These optional classes ceculd be
taken concurrently with the algebra course. One such module might be devoted to
applications and would be an opportunity to delve deeply into several applications. This
module would make the most sense in the second semester. During the first semester,
there might be a module which deals with elementary logic and proof techniques. Another
module might be developed which uses Map/e or seme similar computational'package,
Profes=or H. Montgomery has, | believe, had considerable success along these lines with

the undergraduate number theory course at the University of Michigan.
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Toward One Meaning for Algebra

Al Cuoco
Educational Development Center

Introduction

There are currently two meanings attached to algebra in American education. There
is the algebra that students take in middie and high school {many students, it seems, are
taking it in college as well}, and there is the algebra in courses with titles like "abstract
algebra."” Most people see absolutely no connection between the two algebras; school
algebra and abstract algebra are simply different subjects with the same name. QOne
reasonable response to this last comment is "sc what?" It may be silly to use the same
name for two different mathematics courses, but does it really cause any harm?

| think it does. The lack of communication between algebraists and the people who
teach algebra in school has had severaj bad consequences: '

L School algebra has become » very strange creature over the last two
decades, and it is now a course with very little algebraic content. To
oversimplify, algebra in school has become a mix of drill in meaningless
manipulations of pulynomials and rational expressions together with a
collection of topics that most algebraists would not recogrize. For example,
students spend a great deal of time converting among the "point-slope,”

(LI 1]

"two-point,” "linear,” “slope-intercept,” and "y =mx + b" forms for the
equation of a line (some of these maybe the same—1"m never sure). The
courses hardly ever distinguish between polynomials and polynomial
functions, so that statements like {x-1}{x+ 1} = x*-1 have at least two
distinct meanings. And students spend a great deal of time in algebra
developing something called “function sense.” This isn't a well-defined idea,
and it has very little to do with functions {and almost nothing to do with
algebra), but it seems to center around the ability to predict the change that
will oceur in the graph of a pelynemial function when one of its coefficients

changes. Like a culture cuat off from the outside weorld, school algebra has
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evelved an wntity and an aesthetic of its own, quite remote from its roots.
Stude- . manage to survive in mathematics long enough to get to
abstract atgebra have no experiential bases from which they can abstract
notions about algebraic structures. So, they think of the course as something
that is closer 1o botany than to mathematics. It all seems like a game in
classification; there are groups, rings, and fields, each having its own
collection of sub-species, and the objects of the game are to be able to
define each of the sub-species and to be able to derive simple consequences
from these definitions, Even among the students who e 1joy abstract algebra,
many see it as an intellectual exercise. having little to do with real
mathematics (like differantial equations} and alrnost nothing to do with that
"other algebra” they learned in high school. For too many students, abstract
algebra seems like so much abstract nonsense, and the immense utility of
the structural approach to algebra never surfaces.

Imagine the schizophrenia that must be experienced by people studying to be
high school mathematics teachers. They know that they'll be expected to
teach the y = mx + b algebra after graduation, but, as preparation for this
task, they are given the group-ring-field algebra. In cornversations over the
iast two decades with my colleagues who teach high school mathematics,
I've found that many practicing teachers who took abstract algebra in college
will tell you that they never had an algebra course beyond what they studied
in high schonl; when reminded of their abstract algebra course, the common

response is that it was a complete waste of time.

It doesn’t have to be this way, because it hasn't always been this way. School
algebra in the eariy part of this century was a recognizable preparation for and precursor to
university algebra. There were wonderful books {like Hall and Knight's classic Higher
Algebra} that connected techniques for solving linear and quadratic equations to more
subtle topics from the theory of equations. This study was then continued in college,
leading up to some elementary Galois theory (that's where group theory usually first
appeared). But as research in algebra became more abstract, and as aigebra broadened to
include more than the theory of equations, the thread was broken, and algebra during and

after high school went their separate ways.
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It would be a good idea, then, to put some effort into solving the dilemma of the
two algebras, looking for ways to connect pre-college algebra with algebra as it is used by
mathematicians, scientists, and engineers. This isn't a call for teaching group theory in
middle school, nor is it asking that the content of abstract algebra be watered down. It is
simply a plea that we do some hard thinking about linking the algebra experiences of
students at all levels. This would add some much-needed substance to school algebra, and
it would provide a context from which abstractions could emerge as useful constructions
for high school graduates who plan to make, use, and teach mathematics. Put another
way, |I'd like to see each working group think about the who/e picture and to look for
algebraic threads that can be pulled from kindergarten through graduate school.

Some of these threads might not be about specific content at all; in EDC's
Cannected Geometry curriculum development project, we're trying to build activities that
will heip students develop what we’'re calling mathematical "habits of mind.” Examples
include using proof as a research technique and using proportional reasoning. It should
certainly be possible to identify some algebraic habits of mind, like locking for algorithms in
repeated calculations, developing and using algebraic notation, and looking for structural
similarities in sets equipped with binary operations. Perhaps we might spend some time at
the meeting identifying a small set of such habits, thinking about how students might
develop them over their entire education.

Other threads might be more closely tied to specific content, to topics that already
are {or could be} in the curriculum. In the rest of this paper, I'll describe one such thread
that could begin very early in school and be woven throughout a student’s algebra
experience, right through college.

Algebra as a Theory of Calculation

Most algebraists enjoy a good calculation. The calculation can be in any kind of
system; algebraists calculate with numbers, polynomials, functions, permutations, sets,
propositions, even calculations themselves. Sometimes the calculatior can just be for fun,

as in the famous
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but most times calcuiations are carried out and analyzed for a purpose. Looking into the
properties of calculations could be a central thread in algebra. Initially, this might mean
carefully analyzing calculations to see what information they give you or how they can be
generalized. As students gain more experience with analyzing calculations, they can be on
the lookout for systems that "calculate the same,” and that can lead to the notion of
algebraic structure.

Thinking about calculations, designing efficient algorithms for performing
calculations, and predicting the outcomes of calculations without performing them are all
important facets of algebraic thinking that find utility in a variety of contexts, some of
which seem quite remote from mathematics. Users of spreadsheets in business worry
about calculations all the time {the reference manual for Excel”, for example,
shows how a culture, somewhat disjoint from mathematics, has developed its own
vocabulary and metaphors for supporting thought experiments about calculations). The
symbol manipulation used by people who process text would be quite familiar to
algebraists (think about what you do when you get an e-mail that has paragraph returns at
the end of each line and you want to get rid of these but keep the double returns that
separate paragraphs).

Technology can help support students at every stage of their investigations into
calculations. Computers can be tools for investigating algebra in several ways:

L Computers give students the expressive power needed to describe the

essential features of calculations.

L Computers provide studerits with environments in which they can build
mechanical (computational) models of algebraic structures.

. Students can experiment with their models, studying their behavior and
making conjectures about what they observe.

L When students construct the models for themseives, they have a basis from
which they might estaklish their conjectures; logical connections among the
properties of the algebraic calculations or structures are often mirrored in the
ways that the computational models are built.

Maybe a concrete example would help make these points clear. The next section

outlines an investigation using Mathematica that gets at the arithmetic similarities between

Z and F[x} where F = Q or R. It couid be started in high school (maybe earlier], but it also
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leads one to develop some ideas in abstract algebra that are important to the charge for
Working Group 4. A more detailed account of how this material was used with a group of
high school teachers is available as a preprint (Cuo 1992).

An Exampig: Arithmetic to Algebra

Start with an analysis of Euclid’s algorithm for finding the greatest comrmon divisor

for two integers:

14

216 } 3162

3024 1

1385216

138 1

78 ] 138

ﬁ 1
)7
@ 3
18 } 60
54 3

o |
;—-a—-‘
c|0000

This works because remainders are smaller than divisors and because the gcd function has
two properties:
Euclid’s Theorem. If a and b are integers
gcd [a,b] = gcd (modlb,a),a)
if a = 0,
gcd[0,b] = b
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Mathematica allows you to abstract off the essential features of a calculation and 1o
express them as functional equations; the following two lines build a Mathematica mcdel
for ged:
gedla_.b ] : = ged[modib,al,al
ged(Gb 1:=b

This process of "nailing down" a function that captures a process by constraining it
with functional equations is already a powerful technique for abstraction. It takes a major
cognitive step to be able to think about describing processes with functional equations, but
my experience is that many high school students can do it.

Analyzing the calculation described by Euclid’s algorithm shows that the gcd of two
integers is a linear combination of them. Indeed, the divisor-remainder pairs in our example
are:

(216,3162) - {138,216) - {78,138} - (60,78] - (18,60} - {6,18] -~ (0,6}
which all look like this:
... > (a,b) = (mod(b,a),al - ...
These all nave the same gcd, say d, and a little experimenting and calculating shows that if
d is a combination of any pair in the stream, it is also a combination of the pair that points
to it. The essence of this calculation is that if fcoeff and scoeff are modeled in like this:
fecoeffio,b 1:=0

scoeff[O,b_] = 1

fcoeffia_,b | : = scoeff[mod(b,al,al - quotib,a]* fcoeffimodib,al,al

scoeffla_,b_] : = fcoefflmoad(b,al.a)

{the first equation is somewhat arbitrary), then

gcd(a,b) = a - fcoeff(a,b) + b :scoeff{a,b)
This construction has several benefits. For example, on a concrete levei, it allows students
to classify all the functions that behave like fcoeff and scoeff (this amounts to changing
the initial condition for fcoeff), and on an abstract level, it provides a computational proof
that Z is a PID.

Students can then use these basic functions to construct models for quotient rings
of Z. One way to do this is to represent a congruence class as a pair whose first element
is a distinguished representative of the class (say, the least positive residue) and whose

second element is the modulus. The constructors and selectors look like this:
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classla_,m_]:= {mecdla,m]l.m}
rep : = First
modulus : = Last

and the operaticns on the classes can be modeled in a way that is quite close to the
mathematics:
addlc_.d_] : = class [rep [c] + rep [d], meduluslell]
multlc_,d_] := class [rep [¢] * rep [d], modulusic]]
Here's an example of how one can use this package as a Z/mZ calculator:
In[1]:= class [61,7] == class [16,7]; Out [1]= True
tn {2]:= add [class [5.7]], class [8,7]];;0ut [2]= {6, 7}
In [3]: = mult [class [4,10], class [3,101]; Out [3]= {2, 10}
In [4]: = mult [class [4,10], class [15,101]; Out [4]1= {0, 10}

fl

From here, students can look into the structure of Z/mZ, asking, for example, when
every non-zero element is a unit. Standard arguments show that the multiplicative inverse
of unit in Z/mZ can he calculated as the first coefficient needed to write 1 as a
combination of the unit and m:

reciplc_] := class| fcoeff[ rep[cl,medulus[c] J.modulusic] ]

For example,

In[1):= recip{class [15,71]1]; Out [1]= {19.71}

In [2]: = mult [class [15,71], class [19,7111]; Out [2]1= {1,711}

An interesting investigation is to explain the behavior of recip when it is given a non-unit in
Z/mZ.

What students have here Is a small number theory laboratory: they have
Mathematica madels for some basic functions in arithmetic and a working model for Z/mZ.
They can use this laboratory to investigate topics in arithmetic, building, for example, a
function that solves simultaneous linear congruences {and hence providing a computational
proof of the Chinese remainder thecrem}. But the real payoff is that {with miner

modifications) this same laborateory can be used to investigate other algebraic structures.
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For example, one can calculate the greatest common divisor of two polynomials {in one

variable x over, say, Q) by Euclid's algorithm:

3
202~z -1})622+zx-1
6x? — 3r — 3 3T -3
4r 4+ 2 ) 272~z -1
2z% — o — 1
0

and, as before, the greatest common divisor of two polynomials is a linear combination of
the two polynomials. This process can be captured by the same Mathematica modals:

gedla_,b ] := ged{ mod[b,al,a ]

gedi0.b_] := b

fcoefflO,b_] 1= 0O

scoeffl0,b_ ] = 1

fcoeffla_,b_] : = scoeffl modib,al,a 1 - quotlb,al* fcoeffl modlb,al,a ]

scoeffla_,b_] := fcoeff[ mod[b,al,a ]
provided we make changes to mod and quot so that they take polynomia/ (rather than
integer) remainders and quotients {this is easy to do in Mathematica and in most
programmable symbol manipulators).

Here's a sample Mathematica session that shows how this set-up might work:

In(1l= gedl x* + x> + 1, x* + 1; Out[1l=1-x + %2

In [2]:= fcoeff [ x* + x? + 1, x% + 1]; Out [2]= 1;

In [3]:= scoeff [ x*+ x* + 1, x® + 1]; Out [3]= -x;

In [4]: = Simplify [ x* + x* + 1 + x(x* + 1); 0ut [4]=1-%x + x°

The fact that the same computational models for arithmetic algorithms work for
integers and polynomials suggests that Z and, say, QIx] have some structural similarities,
and looking into these similarities can lead students to some important abstractions. This
approach has been taken in several books {Sawyer 1959 and, more recently, Ireland and

Rosen 1982 and Dubinsky and Leron 1993, for example).
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There are also important differences between the integers and polynomials over a
field. Notice that the greatest common divisor of two polynomials as calculated by Euclid’s
algorithm may not be identical to the result obtained by using the typical high school
method (factoring into primes), and the analysis of this fact leads to a consideration of the
units in Q[x]. It also points to needed modification in the recip functior.: We want the
product of a class modulo f and its reciprocal to be class{1,f}, but our definition of recip:

reciplc_] : = class| fcoeff[ replcl,modulusle] 1, moduius[c] 1
only guarantees that the product of a class ¢ and its reciprocal will be the class

class [gedirepl(c), modulusic)), modulusic) )
To remedy the situation, we redefine recip like this:
recipl¢_] : = classl(1/gcdireplc),modulus[cl]) *
fcoeff[ replcl,modulus[c] J.modulusic] ]
Once this is done, students can investigate calculations in quotieni rings of Q[x]; this
gives students 3 rich and varied collection of algebraic structures in which they can make
conjectures and establish results. Two short examples suggest the possibilities:

Units in riigs. What are the units in Q[x1/f, Q{x]? The th: ry tells us that they are
precisely the elements g-e Qfx] so that the reduction of g modulo f {and hence g itself) is
relatively prime 1o f in Qlx]. Seeing this as a calculation with polynomials adds a different
insight; suppos& . .2 ask our polynomial calculator for a generic formula for reciprocals
modulo x%1: .

In [1]: = Simplify [reciplclass[a +bx, x21]11; Out {1] = {{a - bx)f{a®>b?) , -1 + x?}
So, and element a + bx of Q[x}/(x*-1)Qlx] has a muitiplicative inverse precisely when
a? # b?, Lifting this result back to Qlx] yields the more traditional classification af units
modulo x? -1, and it also opens up many opportunities for a great deal of sense-making.

Extensions of fields., Suppose we reduce modulo a prime p in Q[x]. Then every
non-zero class has a multiplicative inverse, so the quotient ring is, in fact, a field. indeed,
it's a field in which the class nf p is 0. Kronecker used this construction to build root fields
for polynomials. Students can use their Mathematica models to go through exactly the
same process, with the added benefit that the rules for arithmetic in these splitting fields
can be found by performing generic calculations, Here's a Mathematica session that shows

how the rules for arithmetic in C can be found by calculating in R[x1/(x* + 1)R[xI:
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In [4]:= addiclassla + bx, x* + 1], classic + dx, x* + 1{I;
Out[4]={a + c + (b + dix, 1 + x%}
In [B]: = mult [class [a + bx, x? + 1], class [c + dx, x? + 1];
Out [8]= { ac - bd + (bc + adlx, 1 + x%}
In [B): = Simplify [recip lclass la + bx, x? + 1111;
Out [6]= {{a - bx3/(a? + b% ,1 + x%}
in [7):= class [x%, x? + 1]; Out {7]1= {-1, 1 + %%}
This example can be investigated without a very deep background, but it leads directly to
important ideas from field theory. As a bonus, students get to experience a genuinely big
idea in mathematics: reducir;g modulo a troublesome element or set is a general purpose
mechanism that can be used to force desirable properties on a structure.

This is Just a Suggestion

The preceding section is only meant to give an example of one thread that can be
used to tie together high school algebra and abstract algebra. The thread is algebra as a
theory of calculation, the theme is arithmetic in Euclidean rings, and the major
computational medium is a programmable symbol manipulator. The example has the
essential features that most students can jump onto the investigation (say, by studying
Euclid’s algorithm and its consequences in arithmetic), there are several logical places to
jump off {depending on students’ interests and inclinations), and, if taken far enough, the
investigation leads to substantial topics in abstract algebra.

There are certainly other exampies. Another thread might be algebra as a tiieory of
number systems and their extensions, Students might look at the problem of generating
Pythagorean triples {certainiy a high school topic) by studying the properties of the norm
from Z[i] to Z. This could generalize to a search for triangles with integral sides and some
specified angle {a 60" angle connects to the ring of integers in the field of cube roots of
unity}. And this could lead to a more general study of cyclothymic fields (an area that I.
well suited to computational investigations and that re-visits the algebra as calculation
thread), ruler and compass constructions, and special cases of Galois theory.

Organizing courses around examples like these would certainly require changes in
the precollege algebra curriculum, but it would also require changes in the approach to
abstract algebra in college. The major message in abstract algebra should be that

abstraction is an importaiit and useful habit of mind. In order for this message to get to
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students, they need an experiential basis from which abstractions can be constructed, the
abstract algebra course has to draw on this basis, and the power of the abstractions have
to be an explicit part of the course.

Not everyone who studies algebra in high school goes to college, and not everyone
who studies algebra in college becomes an algebraist. As | read the charges for each of the
four working groups, | see a danger that "algebra for everyone” might become "different
algebras for different people.” Maybe that’s inevitable, but it just might be that there is a
small sei of big ideas that gets at the essence of algebraic thinking. If that's the case, then
courses designed around these ideas, at appropriate levels of abstraction, and with
sensible support from computational media, would benefit students from elementary
through graduate school, Maybe there /s one meaning for algebra. | think we should look

for it.
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Some Thoughts on Abstract Algebra

Susan Montgomery
University of Southern California

The paradox we currently face in teaching abstract algebra is that, even though
algebra is being applied in more ways in science and mathematics, and thus more people
need to learn algebra, our students are nct as well prepared as befcre 10 handle proofs and
abstractions. For example, some recent applications include: the use of number theory in
cryptography, and of group thecry, finite fields, lattice theory, linear algebra, and even
algebraic geometry in coding theary. Note the article in Sc/ence, October 29, 1993, on the
relationship between nonlinear codes and linear codes using Z/4Z. Of course groups and
Lie algebras have heen important in physics for a long time.

However, our students now have even |ess experience with proofs than in previous
years. Once we did proofs in calculus; now only the bravest attempt this in most
universities. After that, it was still possible to remind the students that they had seen (and,
one hoped, even done} proofs in plane geometry in _high school. Now, however, proofs
have all but been abandoned in high scheol. | heard recently that one of the most popular
current higi: school geometry texts contains only two proofs in the entire book. Some
reasons for this which | have heard is that students didn't understand what a prcof was
anyway — they think it means a line down the middle of a page with statements on the left
and reasons on the right—and that it is more important to develop intuition. If a fact is
"obviously" true, why should it need a proof? The result of these new developments is that
it is entirely possible for a math major in your abstract algebra class never t¢ have had to
prove anything before.

One consequence of this is that we Spend so much time convincing the students
what a preof is that we don’t get very far into the actual content ¢f algebra. Socme
students even struggle with the tdea of a definition and how to verify that scmething
satisfies it. They end up feeling that the course is only about abstractions. And the
instructor, in desperation, chooses topics because the students are able to undurstand
them, or compute examples easily, rather than because these tcpics will be important in

the leng run (in future science or math courses) o1 because they cre part of the
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fundamental methods or structure of algebra. I'm sure most of us are all toc familiar with
this situation.

A related problem is the generallv poor preparation of American students who do go
vn to graduate school; they are typically a year or two behind the foreign students and
have to take remedial courses in algebra and analysis to catch up, if they ever do (there
was an article in YME Trends last year about suci. courses oeing instituted at Rutgers),
Given the trends described above, it is hard to believe that this will improve in the near
future. Thus, our problem is how to present the important ideas and techniques in algebra,
along \vith their abstract structure, and with a long-range view as to why these topics are
taught, to students who are less and less prepared to deal with the formalism.

| don't really hgve a solution for this, except to mention some things that have
worked for me. We have had a very successful course at USC in applied algebra for a
number of years, precbably due to our strong groups in Computer Science doing
cryptography and in Electrical Engineering doing coding theory; in fact, their very best
students take our graduate algebra sequence. |'ve been using the book by Gilbert, which
seems like a very nice combination of algebra with applications. For example, the group

theory emphasizes group actions, including symmetry groups, the regular polyhedra, orbits

in aeneral, and Polya-Burnside enumeration in particular (including applications to switching

circuits and chemistry]; ti:e methods are also applied to the usual group theory topics.

The population for this course has mostly been beginning graduate students in
engineering; the only prerequisite is advanced calculus, thougi in practice most students
have had linear algebra. The students seem to like the material and do fairly well, though
they are much more motivated than our typical undergraduate student.

This year, | experimented with some of ti.2se topics in the undergraduate course,
using the naw book by M. Artin. | used to think that group actions were toc sophisticated
for this course; however, this turned out not o be true. 1 started out by considering actions
of the finite groups C, and D, as rotations and reflections of the plane. After asking the
students to draw the orbits of various points in the plane under these actions and then
asking them to find the stabilizers, they were then ready to believe that the product of the
number of elements in the orbit times the order of the stabilizer equaled the order of the
group. Then when | used this fact to prove more abstract things like Cauchy's theorem,

they seemed to think it was a natural way to proceed. A miracle!
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Thus, this is one possible approach: intreduce more concrete topics, including some
geometric reasoning, but with the end of giving them some intuition as to why tha more
general theory is natural.

Although I've been concerned here with abstract algebra, 1'd also like to comment
on the importance of linear algebra. We have two levels of linear algebra at USC. The first
is the sophomore-level course, with applications to systems of linear differential equations,
which is really part of the calculus sequence, and the second is the advanced course which
usually follows a semester of abstract algebra. Although most of the students in the first
course are science and engineering majors, and consequently proofs are not emphasized
(though we do manage to put a few inl), never-the-less a student’s performance in linear
algebra is the best predictor of success in abstract algebra, much more s0 than how well
they do in the rest of the calculus courses. | don't completely understand why this is so,
except that there is scme abstract structure in the course, which forces the students to
organize the material in a new way. This suggests that more linear algebra in high schoo!
might help the student to deal with abstractions later, and help compensate for the removal

of formalism in geometry.
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Suggestions for the Teaching of Algebra

William Yslas Vélez
University of Arizona

As | looked over the material that was sent to me, | decided to focus in on three

different topics.

L4 Sociology of the ctassroom,
] Use of technology in the classroom, and
L Course content.

Sociology of the Classroom

The notiocn that we have to have more cultural diversity in mathematics based
careers is a topic that has been given a great deal of press recently. It is an absolute
necessity that all individuals in this country have access to these careers. But how is this
lofty goal to be achieved? That is the real question.

1 am not going to emphasize this question in this paper. | think that we have a more
basic problem in this country, namely, how can we attract alf of our own children into the
study of mathematics? | have to admit that | do not have clear ideas as to how to
encourage our own children to avoid the culture of drugs and alcohol that is so pervasive in
this country and instead choose a more reflective lifestyle. Even as | write this sentence, |
am overcome by the ridiculousness of this statement. Our children are being taken away
from us by a culture of violerice, and we appear almost powerless to entice them from this.

It is this point of view that flavors my comments. | am not going to focus on how to
attract those very bright children into the study of algebra. Instead, | want to think of how
we can attract all of our children into being mathematically literate, so that they will have
the opportunity to participate in the present technological revolut' ~n. 1 believe that this
task requires not only a rethinking of what it is that we teach but also how it iz that we
present that material,

As | attempt to encourage the Chicano students in the Southwest to consider
mathematics —based fields, | am struck by one fact. Whatever it is that | do to entice these
students into these studies has little to do with the fact that they share the same cuitural

heritage as |, but rather it has everything to do with a simple dictum that my mother used
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to tell me, Hablando se entiende /a gente, that is, "By speaking we make ourselves
understoad." | do not think‘that the mathematics community has made a very concerted
effort to inform our populace that mathematics is not only an exciting field of study, but it
also leads to interesting careers that carry with them attractive monetary and intellectual
rewards. In order to emphasize this point, | would like to make some personal remarks.

| grew up in that poverty that was part of the culture of being a Chicanc in the
Southwest. This poverty and a Mexican-American up-bringing created culture shock as |
was forced to functioq in the American school system. There are differences in the
cultures, differences thch sometimes make living _together difficult. With this in mind,
allow me to recount the following incidents. On two separate occasions the following
occurrzd. | had called a colleague at his home in order to pick up a book or something. It
was agreed that | could come ovar and pick it up. Whe 1 | arrived the colleague opened the
door, told me that he would get the object for me, then closed the door in my face as he
retreated into his home to get the object. This person had invited me over and left me
standing outside. | was shocked by this behavior, and | have often toid myself that no
Hispanic would behave in such an uneducated fashion as to leave a guest standing on
his/her doorstep. These two incidents have always stood out in mind as | have thought of
the interactions of the Mexican-American and the Anglo cultures. In the Mexican culture,
the term educado carries with it not the implication of a formal education but rather the
connotation of a person who is cultured enough to treat others with dignity and respect.
From my own cultural perspective, | often felt that Anglo academics were not educados in
spite of their "education.”

| mention these incidents for the following reasons. | believe that the community of
mathematics professors invites students into their classrooms and then closes the door and
leaves these students on the doorstep, mostly in shock and feeling demoralized. | am not
saying that Anglo professors leave minority students in the cold, though that may be true,
| am saying that mathematics professors leave most students there.

One of the reasons for this behavior is cultural. The mathematics profession is a
culture inhabited by mostly very bright people, or so we want the rest of the world to
think. In order to maintain this perception, we must behave in ways that would encourage
the population to believe this. We are rational human beings whose professional goals are

to think about this very difficult subject, mathematics. We teach our classes with a certain
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aloofness so that students won't bother us. There is no question that there is a certain
facade to our profession, a facade that makes communication difficult.

But it is also true that we are abstract thinkers, and pretty good at it. In fact, those
who end up teaching mathematics at universities are the survivors of the training process
for the profession; they are the ones who are good at it. So how do we communicate this
to our students? Communicate what? This abstract thinking is such a natural part of our
being that it does not occur to us most of the time to even think of thi> aspect of teaching.
Yet this is also a great cultural difference between ourselves, as professors, and the
students who must not only struggle with the new concepts but 2lso with this new way of
thinking.

In summary, | would make the following recommendations:

. Communication is the key to education. Besides teaching our students

we should take time to speak with them about mathematics and the
career opportunities for mathematics-based fields.

) Our main job as teachers of mathematics is not to pass on to the
students a technique, but rather a point of view.

. We should recognize that mathematicians are abstract thinkers, and
good at it. However, the student population is not as adept at it as
we are, and they must be trained.

L Woe should attempt to teach the students who show up in our
classrooms. It is pointless to compare these students to the past or to
wish for the students of the future.

Technology in the Classroom

In the fall semester of 1992, | had the .good fortune to teach first semester calculus
using the Harvard Calculus Consortium notes. The leading philuosophy of the course is the
Rule of Three, that all ideas should be presented numerically, geometrically, and
analytically. This philosophy has made me think about how it is that | present material, and
it also forces me to think how it is that | could use technology to better present the
material. The profession has barely begun to scratch the surface here. | think that we are
at the beginning of a real revolution.

At the same time that [ began to teach this course, | also bzgan using the |IBM

Personal Science Laboratory (PSL). The PSL connects to a computer in the classroom and

225

o050



Q
ERIC

Aruitoxt provided by ERic:

allows the instructor to run experiments in the classroom. The data from these experiments
is projected onto a screen as the experiment is running. This provides an immediate
connection between the experiment and the data. The PSL comes with probes for
measuring distance, temperature, and light intensity, among others. The distance probe
allows one to measure the distance of a moving obkject. This piece of technology allows the
instructor to generate data immediately, display the data geometrically, and then fit a curve
to the data. This is a wonderful example of the Rule of Three.

If | am to address the issue of technology in the classroom, then | cannot address
this issue in abstract terms, but rather | must discuss my own very limited experiences.

Knowing that | had the computer technology available for my first semester
Calculus class, | gave the following assignment to my students. | asked the students to
devise two experiments which | would be able to run using the PSL. One of the
experiments was to produce data that was linear and the other was to have data that was
quadratic. | fully expected that the quadratic data was to be very easy, simply drop a ball.
| was quite surprised to find that many of the students did not know that a falling object
should have a quadratic path. This assignment had been given more than halfway into the
course, and we had had a couple of homework problems dealing with a quadratic equation
modeling a falling body. Yet many of the students still had not internalized this fact. In
discussions that | had with the students, | found out that some thought that the data
should be exponential. But even here there was disagreement; some said that it should be
e”(kt), while others thought it should have the form a*(1-e*{-kt)), where k is positive, |
was shocked, yet here was reality.

| corrected the students’ thinking on this topic and pointed out that falling bodies
should have quadratic paths. So now students gave me all kinds of experiments, drop a
ball or bounce a ball off a wall. | pointed out that | had to be able to run the experiments in
the classroom, and dropping a ball would take less than three seconds, not enough time to
gather decent data. Besides, | didn’t want to break the probe by dropping a ball on it.
Finally, we discussed rolling objects down an inclined plane. 1 told the students that they
had to bring in things to roll down. It was wonderful. Students brought in skateboards,
bowling balls, basketballs, and pairs of rolling skates tied together, but the results of the
experiments were disappointing. The data did not lcok quadratic enough. As a ball was let

go down an inclined plane, the data looked almost linear. | was panicking as | had the
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students looking at me as | ran these disappsinting experiments in front of them, and then
it occurred to me! Why not roll the ball up the plane and let it come down. The data was
dramatic, a perfect parabola.

Though these experiments were in a Calculus ciass, | think it appropriate to discuss
them here, as we address the issue of presenting algebra. After all, a polynomial, one of
the basic ingredients of algebra, is being used to model a very real situation.

Though | have taught calculus and linear algebra courses that used either a graphics
calculator or used some specific software, | have not had enough experience to make solid
recommendations. | am convinced that the intelligent use of technology will serve to make
mathematics instruction more effective. | would hope that in the future all of our
mathematics courses have a laboratory associated to tham.

Summarizing, 1 would make tine following recommendations:

o The mathematics community should aggressively seek new ways of

presenting the material. The use of technology in the classroom
should be encouraged at all levels of instruction.

@ Change does not necessarily occur spontaneously. QOur faculty have

to be encouraged to seek new ways of instruction.

Content of Our Algebra Courses

Algebra is the study of structure, yet this is probably news to the undergraduate
student. To most of our students, algebra is equated with calculation, and this calculation
is the servant of science, not a subject of interest in itself. This same attitude is reinforced
in our Calculus classes.

We no longer teach structure in high school or in Calculus. Perhaps this is one of
the reasons that the transition from lower division mathematics to our abstract upper
division mathematics courses is so difficult. We emphasize calculations at the beginning of
the training of our mathematics undergraduates, and then change the rules on these
students when they make the transition to the upper division mathematics courses. These
lower division students think that they are doing well in their studies, only to find out that
the major that they chose has suddenly become almost unrecognizable to them as they
begin studying abstract and linear algebra and advanced calculus. We have tried to soften

this transition by introducing a proof course, hut these courses have had little success.
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Perhaps the first instance in a student’s career where structure cannot be ignored is
the study of differential equations. In many of these sophomore level courses, ideas frum
linear algebra are introduced in order to be able 1o explicitly obtain solutions to classes of
differential equations. This infusion of linear algebra is not done because of the love of
algebra, but rather because the structure of the solutions can no longer be ignored.

it is my own belief that linear algebra is the most important upper division course
that a student can take, The methods and results of this subject pervade ali aspects of
mathematics and its applications. The subject introduces itself early in the high school
curriculum, makes itself indispensable at the sophomore level, in a context completely
different form its nascency, and then, phoenix-like, rises again to motivate so much
graduate mathematics and applications. If we are looking for an aigebra thread to weave
through a student’s education, from high schoo! through graduate studies, what better
than the subject of linear algebra?

One problem with linear algebra', at present, is that the subject almost dies through
three semesters of Calculus. Now here is a challenge. Is it possible to bring this subject of
linear algebra into our Calculus course in a meaningful way?

The other mainstay of aigebra at the upper division level is, of course, modern
algebra. Many universities offer a two semester course in this subject. The first semester is
usually the standard course covering the topics of groups, rings, and fields. The second
semester can be more of the same abstract development or it can be a course in applied
algebra. | would prefer the second course for the following reason. For those students
taking a second course in abstract algebra, which would cover theoretical topics such as
Galois theory, | would ass'ime that these students are going on to graduate school. If so,
the students will cover this material in greater depth at a higher level, so why have two
semesters of this course? | would prefer a second course to cover a variety of applications,
for example, coding theory, cryptography, crystallographic groups, or finite fields. Perhaps
a second course could focus on algorithmic aspects of algebra, covering Grobner bases, for
example. Such an applied course has the benefit that it can draw in a wider audience and
attract students from engineering and computer science.

In summary, | would make the following recommendations:

. College‘a|gebra should reflect the transition from our knowledge in

high school to a higher level of sophistication.
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Linear algebra should be the thread that goes through mathematics,
from high school through graduate school.

A course on the applications of algebra should be offered instead of a
second course in abstract algebra.

In all of these subjects, the use of technology should be pursued in
order to better present these abstract ideas.

It is laudable that we have attempted to make calculus more intuitive.
Proofs have been replaced ty an appeal to geometric intuition or
numerical calculations. Students leave calculus with a better
understanding of the basic ideas of calculus. Since most of our
calculus students will not go on to become mathematics majors, |
think that these students leave with a better understanding of
mathematics. However, some of these students will go on to take
upper division mathematics courses. In these upper division courses,
proof still reigns supreme. Proof is what makes our science. Proof is
our too! for sharpening our intuition and for carrying out our
investigations. Proof cannot be ignored. The chalienge is then to find
a way of bridging the gap that exists between the way we present
lower division mathematics to the way we present upper division

mathematics.
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UNITED STATES DEPARTMENT OF EDUCATION

OFFICE OF THE ASSISTANT SECRETARY
FOR EDUCATIONAL RESEARCH AND IMPROVEMENT

THE ALGEBRA INITIATIVE COLLOQUIUM
The Xerox Document University, Leesburg Virginia
December 9 through 12, 1993
Tuursday evenipg, Decembex 9, 1993
3:00 - 6:30 Registration
6:30 - 7:00 Cash Bar ({Dining Room, Center Section)

7:00 - 9:00 Tracing the Development of Algebra and of Algebra
Education in the Schools

Dinner Session

Welcome & Introduction: Joseph Conaty, Director,
Office of Research, OERI

Speaker: Victor Katz, University of the District
c¢f Columbia

Discussion

Charge to Participants: Carole Lacampagne, Office
of Research, OERI

9:00~9:30 Meeting of Working Group Chairs and At-Large
Participants

Frriday, December 10, 1993
7:00 - 8:00 Breakfast

8:30 - 10:00 Creating an Appropriate Algebra Experience for all
K-12 Students (Room 3475 Red)

Speaker: James Kaput, University of Massachusetts
at Dartmouth

Respornders: Gail Burrill, Whitnall High School,
Creenfield, Wisconsin

James Fey, University of Marylanc

Discussion
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10:00 - 10:230

10:30 - 12:00

12:00 - 1:00

1:30 - 3:00

3:00 - 3:30

3:30 - 5:00

6:00 - 7:00

7:00 - 8:30

8:30 - 9:00

Break
Working Group Sessions

Participants will meet with their assigned working
groups for discussion of key issues

(Working Group 1, Room 3263 Yellow)
(Working Group 2, Room 3461 Red)
(Working Group 3, Room 3465 Red)
(Working Groap 4, Room 3463 Red)

Lunch

Renewing Algebra at the College Level to Serve the
Future Mathematician, Scientist, and Engineer
(Room 3475 Red)

Speaker: Michael Artin, Massachusetts Institute
of Technology

Responder: Vera Pless, University of Illinois
at Chicago

Discussion

Break

Working Group Sessions

Participants will meet with their assigned wo:king
groups for discussion of key issues

(Working Group 1, Room 3263 Yellow)
(Working Group 2, Room 31461 Red)
(Working Group 3, Room 3465 Red)
(Working Group 4, Room 3463 Red)

Dinner

Cross-gutting Panel and Discussion
(Room 3475 Red)

Two representatives from each Working Group will
ocutline issues discussed in their Working Groups
that cut across Working Group boundaries. Whole
group discussion will follow.

Meeting of Working Group Chairs and At-~large
Participants
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Saturday, Decewmber 11, 1993

8:00 - 8:45

8:45 - 10:15

10:15 = 10:45

10:45 = 11:45

11:45 = 12:30

1:00 - 2:30

2:30 = 3:00

3:00 - 5:00

Breakfast
Reshaning Algebra to Serve the Evolving Needs of

the Technical Workforce
{Room 3475 Red)

Speaker: Henry Pollak, Teachers College, Columbia
University

Responder: Solomon Garfunkel, COMAP, Inc.
Discussion

Break

Working Group Sessions

Participants will meet with their assigned working
groups for discussion of key issues

{(Working Group 1, Room 3263 Yellow)
{Working Group 2, Room 3461 Red)
{(Working Group 3, Room 3465 Red)
(Working Group 4, Room 3463 Red)

Lunch

Educating Teachers, Including K-8 Teachers, to
Provide Appropriate Algebra Experlences for Their
Students

{Rocw 3475 Red)

Speaker: Alba Gonzalez Thompson, San Diego State
University

Responder: Marjorie Enneking, Portland State
University

Disc 1ssion
Break
Working Group Sessions

Participants will meet with their assigned working
groups for discussion of key issues

(Working Group 1, Room 3263 Yellow)
(Working Group 2, Room 3461 Red)
(Working Group 3, Room 3465 Red)
(Working Group 4, Room 3463 Red)
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5:30 - 6:30 Dinner

7:00 - 8:30 cross-cutting Groups
Represantatives from each Working Group will meet
in four Cross-cutting Groups to outline issues
discussed in their respective Working Groups that
cut across Working Group boundaries.
(Cross-cutting Group 1, Room 3263 Yellow)
{Cross-cutting Group 2, Room 3461 Red)
{Cross-cutting Group 3, Room 3465 Red)
{Cross-cutting Group 4, Room 3463 Red)

8:30 = 9:00 Meeting of Working Group Cthairs and At-Large
Participants

Sunday, Decemker 12, 1993

8:00 - 8:45 Breakfast

8:45 - 9:45 Cross—-cutting Working Groups Panel and Discussion
(Room 3475 Red) )

Two representatives from each Cross-cutting
Working Croup will present the conclusions of
those working groups. Whole group discussion will
follow.

9:45 =~ 10:15 Break

10:15 - 11:45 Wrap up and Look te the Future
{Room 3475 Red)

Speaker: Lynn Steen, Mathematical Sciences
Education Bocard

Discussion
Where Do We Go From Here?
Discussant: Carole Lacampagne
11:45 -~ 12:30 Lunch
1:00 Bus departs for Dulles Airport from Plaza B

Please leave your room key at the registration
desk or at the key drop box provided at Plaza B.
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Appendix B
Conceptual Framework for the Algebra Initiative
of the National Institute on Student Achievement,
Curriculum, and Assessment

Carole B. Lacampagne

Algebra is the language of mathematics. It opens doors to more advanced
mathematical topics for those who master basic algebraic concepts. It closes doors to
college and to technology-based careers for those who do not. Those most seriously
affected by lack of algebraic skills are students from minority groups. Moreover, advanc;es
in the field of algebra, technology, in the needs of the work force, and in research on the
ieaching and learning of algebra shouid profoundly affect what algebra is taught and how it
is taught and learned. Unfortunately, changes in the algebra curriculum and in its teaching
and learning do not manifest themselves frequently in the classrooms of America. The
proposed National Institute on Student Achievement, Curriculum, and Assessment initiative
will confront this current crisis in the learning and teaching of algebra at all levels,

kindergarten through graduate school.
Problem and Significance of the Initiative

Algebra is central to continued learning in mathematics. The position of the National
Council of Teachers of Mathematics and of the ensuing refornr in mathematics recognizes
the need for restructuring algebra to make it part of the curriculum for all students.
Moreover, reform is just under way in college curriculum and teaching of mathematics,
including algabra. However, there is no coordinating mechanism to link all the groups
concerned with the content, teaching ard learning, and research in algebra. It is the aim of
thu proposed Algebra Initiative to provide this coordinating mechanism.

Conceptual Framework

Four key constructs provide a vonceptual framework for the National Institute’s

Algebra Initiative:

L Creating an appropriate algebra experience for all grades K-12 students:
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L] Educating teachers, including K-8 teachers, to provide these algebra

experiences;

L Reshaping algebra to serve the evolving needs of the technical work for :e;
and
L Renewing algebra at the college level to serve the future mathematician,

scientist, and engineer.
These constructs will be addressed in light of current and proposed advances in computer
technology that shouid seriously affect what algebra is learned in the 21st century, and
how it is taught.

Moreover, the uniqueness of the National Institute on Student Achievement,
Curriculum, and Assessment’s Algebra Initiative is that these constructs will be dealt with
in toto: that is, the continuum of and branching of algebra across the gamut of potential
users —those whose formal experience with algebra ends in high school through the
research mathematician.

Algebra for All Students

In its Curriculum and Evaluation Standards for School Mathematics, the National
Council of Teachers of Mathematics recommends algebra for all students, beginning in the
middie school years as a bridge between the concrete mathaematics curriculum of the
elementary school and the more formal curriculum of the high school. Moreover, aigebra is
to be part of a core curriculum in high school mathematics, t0 be taken by all students.

The National Center for Research in Mathematical Sciences Education’s (NCRMSE])
Working Group on LearningfTeaching of Algebra and Quantitative Analysis is also re-
examining the place of algebra in a core quanltitative mathematics curriculum. They are
looking to reform the algebra curriculum along such coherent mathematical ideas as
function and structure and to study the effect of such a curriculum on how teachers teach
algebra. They are looking at the reformed curriculum in light of advances in computer
software and technology which allow one to do many of the algorithmic and graphing
processes of algebra on a computer or sophisticated calculator,

Besides supporting the NCRMSE Working Group on Learning/Teaching of Algebra
and Quantitative Analysis, the U.S. Department of Education supports other algebra
initiatives including Robert Moses’ Algebra Project, a pre-algebra project designed to bridge

the gap between arithmetic and algebra for minority students.
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The National Science Foundation is funding a variety of projects to develop
instructional materials in mathematics, K-12. Many of these materials include algebra
strands. One such materials development proiect addresses directly a core high school
mathematics curriculum which includes algebra. Several others have algebra strands
cutting across several grade levels. Still others stress algebraic applications to other-
disciplines such as science and business.

Questions that need to be addressed include: _

L] What algebra concepts should be part of the core mathematics curriculum for

all students?

L] How should they be taught and learned?

What is the role of technology in this curriculum and pedagogy?

* How will these algebra concepts be tied into the needs of an educated citizen

and a technical worker?

® How will they be related to the continuum of algebra in college and beyond?

L] How will they prepare students for lifelong learning in mathematics?

Algebra for Future School Teachers of Mathematics

With the teaching and learning of algebra moved down to the middle school years,
elementary school teachers now need a thorough understanding of the underlying concepts
of algebra, of how children understand/misunderstand basic algebra concepts, and of
pedagogical approaches suitable to helping children develop early algebra concepts. High
school teachers of mathematics need a new and different knowledge of algebra and
appropriate pedagogy. They need to understand the links between algebra and other fields
of mathematics as well as between algebra and its applications to the socizi, natural, and
physical sciences.

Thus, mathematics curriculum and pedagogy for future teachers of mathematics
need to be rethought in light of the changing role of algebra in the schoo! curriculum. The
Mathermatical Assnciation of America recognizes the need for a different experience in
algebra for future school teachers of mathematics in its document A Calf for Change:
Recommendations for the Mathematical Preparation of Teachers. However, much work is
needed to effect change in the algebraic education of future teachers.

Questions that need to be addressed include:

® What algebra concepts and pedagogy should "¢ fundamental to mathematics
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courses required of future elementary school teachers? middle school

izachers? high school teachers?

. How can future teachers best acquire such knowledge and skills?
L How can we enhance the algebraic and pedagogical skills of current
teachers?

Algebra for the Technical Work Force

The majority of U.S. students are leaving school ill-prepared in mathematical
problem solving, planning and optimizing, and mathematical modeling --mathematical tools
needed in forward-thinking business and industry. All of the above areas are based on the
language and operations of algebra and all should play an important role in curricula
designed for those entering the technical work force —be they products of high school
vocational education, 2-plus-2 plans, or 4-year college technical education curricula.
Emphasis here will be on developing curricula and pedagogy to equip students to meet the
demands of the 21st century work force and to provide the base for lifelong learning in
mathematics as technology shifts and careers change.

Questions to be addressed include:

. What algebra concepts, beyond the core, do students preparing to enter the

technicai work force need?

. How should these concepts be taught and learned?
. What is the role of technology in such a curriculum and pedagogy?
L How will these algebra concepts prepare students for continuing learning in

mathematics?
. Can we circumvent the dreary sequence of remedial courses in arithmetic
and algebra that many community college students must take?

Algebra for the Future Mathematician, Scientist, and Engineer

Algebra is the language of mathematics. Just as school algebra aliows students to
communicate mathematically, to model problems and to sclve them, its extensions, linear
and abstract algebra form a basis for many areas of mathematics: group theory, ring
theory, algebraic topology, and algebraic number theory, to name a few. Basic knowledge
of linear and abstract algebra concepts are required of all college mathematics majors, and

a deeper understanding of these concupts are required of nll serious users of mathematics.
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Recent developments in computer software have made complex matrix manipulation,

graphing, and object manipulation quicker and have enabled further developments in

several areas of algebra.

Key questions to be considered include:

How should the transition from school algebra to the advanced algebra
concepts taught in college be accomplished?

How can we help students develop mathematical maturity and smooth their
transition into a first proof course?

What advanced algebra concepts should form the core of the collegiate
mathematics major? for the graduate degree in mathematics?

How should these concepts be taught and learned?

What is the role of technology in such a curriculum and pedagogy?

What research opportunities in algebra can be afforded students in their
undergraduate and early graduate experience in mathematics?

How will these algebra concepts prepare students for employment outside of

academia?

Action Pian

The action plan for the National Institute on Student Achievement, Curriculum, and

Assessment’s Algebra Initiative includes:

A 3 1/2 day invitational colloguium;

A widely distributed summary document for policymakers and teachers on
the major issues discussed at the colloquium;

A complete Proceedings of the colloquium to be distributed to the
mathematics and mathematics education communities;

A 2-year discretionary grant solicitation for a Linking Algebra project; and
The linking of other initiatives, both within the Department of Education and

across other federal agencies, to what is learned from the Algebra Initiative.

Invitational Colloguium

The National Institute on Student Achievement, Curriculum, and Assessment’s

Algebra Initiative will begin with a 3 1/2 day invitational cocllequium on algebra involving

about 40 key players from NCRMSE, the Algebra Project, principal investigators from

NSF's algebra materials development and research projects, college teachers of algebra,

ERIC
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and mathematics and mathematics education researchers plus additional mathematics
experts from federal agencies. Carole Lacampagne will run the colloquium in coordination
with William Blair, James Kaput, and Richard Leash.

Summary Document

A report writer with experience in writing articles about mathematics will be hired to
write a short document for policymakers and teachers based on issues raised at the
colloquium. This document will be distributed widely within 4 months of the colloquium.
Proceedings

All speakers, discussants, and participants in the colloquium will be asked to submit
papers to be published in a Proceedings. This document will be distributed to the
mathematics community.

Further dissemination of knowledge gained through the cofloquium will occur at
workshops, minicourses, and talks on algebra given at annual meetings of the National
Council of Teachers of Mathematics, the Society for Industrial and Applied Mathematics,
and at semiannual joint meetings of the Mathematical Association of America, and the
American Mathematical Society.

Two-year Discretionary Grant Solicitation for a Linking Algebra Project

It is anticipated that the Department of Education, perhaps in collaboration with
other federal agencies, will fund a Linking Algebra project organized around the four key
constructs of the colloquium to extend the concepts of, embark on research in, and
prepare for implementation in schools and colleges knowledge gained in the colloguium.

It is anticipated that the Algebra Initiative through taking the broad view of algebra,
from the teaching and learning of algebra in the elementary school through breakthroughs
in research, will spur teachers of mathematics, teachers of teachers of mathematics, and
the mathematics and mathematics education communities to coordinate and extend the

role of algebra for all learners and users of mathematics.
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Appendix C
Participant List

Working Group 1: Creating an Appropriate Algebra Experience For All K-12
Students

Invited Participants

Diane Briars
Pittsburgh Public Schools
Pittsburgh, PA

Gail Burrill, WG1 Reactor
Whitnall High School
Greenfield, Wi

Daniel Chazan
Michigan State University
East Lansing, MI

Robert Davis
Rutgers University
New Brunswick, NJ

James Fey, WG1 Reactor
University of Maryland
College Park, MD

Rogers Hall
University of California
Berkeley, CA

James Kaput. WG1 Speaker
University of Massachusetts at Dartmouth
North Dartmouth, MA

Robert Moses

The Algebra Project, Inc.
Cambridge, MA

Betty Phillips

Chair, NCTM Algebra Task Force
East Lansing, M!
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Alan Schoenfeld, WG* Chair
University of California, Berkeley
Berkeley, CA

Zalman Usiskin
University of Chicago
Chicago, IL

Federal Participants

Eric Robinson
National Science Foundation
Arlington, VA

Charles Stalford
U.S. Department of Education
Woashington, DC

Working Group 2: Educating Teachers, Including K-8 Teachers, to Provide These
Algebra Experiences

Invited Participants

Alphonse Buccino, WG2 Chair
University of Georgia
Athens, GA

Suzanne Damarin
The Ohio State University
Columbus, OH

Marjorie Enneking, WG2 Reactor
Portland State University
Portland, OR

Naomi Fisher

University of Illinois at Chicago
Chicago, IL

Guershon Harel

Purdue University
West Lafayette, IN
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Alba Gonzalez Thompson, WG2 Speaker
San Diego State University
San Diego, CA

Federal Participants

Clare Gifford Banwart
U.S. Department of Education
Washington, DC

Henry Kepner
National Science Foundation
Arlington, VA

James Pratt
Johnson Space Center
Houston, TX

Cindy Musick
U.S. Department of Energy
Washington, DC

Tina Straley
National Science Foundation
Arlington, VA

Working Group 3: Reshaping Algebra to Serve the Evolving Needs of the Technical
Workforce

- Invited Participants

Paul Davis
Worcester Polytechnic Institute
Worcester, MA

Susan Forman, WG3 Chair
Mathemai cal Sciences Education Board
Washington, BC

Solomon Garfunkel, WG 3 Reactor

COMAP, Inc.
Lexington, MA

245

[
S
~1




@@S

lay

James Greeno
Stanford University
Stanford, CA

Richard Lesh
Educational Testing Service
Princeton, NJ

Patrick McCray
G D Searle & Co,
Evanston,; IL

Henry Pollak, WG3 Speaker
Columbia University
New York, NY

Thomas Romberg
University of Wisconsin-Madison
Madison, WI

Susan S. Wood

J. Sargeant Reynolds Community College
Richmond, VA

Federal Participants

Elizabeth Teles
National Science Foundation
Arlington, VA

Donna Walker
U.S. Department of Labor
Washington, DC

Working Group 4: Renewing Algebra at the College Level to Serve the . uture
Mathematician, Scientist, and Engineer

Invited Participants

Michael Artin, WG4 Speaker
Massachusetts Institute of Technology
Cambridge, MA

William Blair

Northern lllinois University
DeXalb, IL
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John Conway
Princeton University
Princeton, NJ

Al Cuoco
Education Development Center
Newton, MA

Joseph Gallian, WG4 Chair
University of Minnescta-Duluth
Duluth, MN

Cleve Moler

Chair, The Mathworks, Inc.
Sherborn, MA

Susan Montgomery
University of Southern California
Los Angeles, CA

Vera Pless, WG4 Reactor
University of lllinois at Chicago
Chicago, IL

William Velez
University of Arizona
Tucson, AZ

Federal Participants

Ann Boyle
National Science Foundation
Washington, DC

Charles F. Osgood
National Security Agency
Ft. George G. Meade, MD

Joan Straumanis

U.S. Department of Education
Washington, DC

At-Large Participants

Victor Katz, Keynote Speaker

University of the District of Columbia
Washington, DC
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Lynn Steen, Wrap-up Speaker
Mathematical Sciences Education Board
Washington, DC

Carole Lacampagne, Colloguium Convener
U.S. Department of Education
Washington, DC

Barry Cipra, Scientific Writer
Northfield, MN
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